Math, asked by Anonymous, 3 months ago


{ \mathsf{ \blue{Hey  \: Brainliests...! }}}
{ \underline{ \mathrm{ \red{Here  \: a \:   \: Question  \: to \:  you :}}}}
(a) Find x if the distance between (-8, x) and (2, 0) is 5√5

(b) Find the point on the x-axis which is equidistant from (2,-5) and (-2,9)

{ \mathrm{ \green{Note:-}}}
 :   \:  \to{ \tt{ \orange{Need  \: Quality  \: Answer }}} \\  \\   : \:  \:  \to{ \tt{ \orange{Don't \:  Spam}}}

Answers

Answered by VishnuPriya2801
43

Answer:-

a) Given:-

Distance between ( - 8 , x) and (2 , 0) is 5√5 units.

We know that,

Distance between two points (x₁ , y₁) & (x₂ , y₂) is:

  \red{\sf \:  \sqrt{ {(x_2 - x_1)}^{2}  + ( {y_2 - y_1)}^{2} } }

Let,

  • x ₁ = -8

  • y₁ = x

  • x₂ = 2

  • y₂ = 0

So, According to the question,

 \implies \sf \:  \sqrt{ {[2 - ( - 8)]}^{2}  + (0 - x) ^{2} }  = 5 \sqrt{5}  \\  \\  \\ \implies \sf \: \sqrt{( {2 + 8)}^{2} + ( - x) ^{2}  }  = 5 \sqrt{5}

On squaring both sides we get,

 \implies \sf \:  {(10)}^{2}  +  {x}^{2}  = 25 \times 5 \\  \\  \\ \implies \sf \:100 +  {x}^{2}  = 125 \\  \\  \\ \implies \sf \: {x}^{2}  = 125 - 100 \\  \\  \\ \implies \sf \: {x}^{2}  = 25 \\  \\  \\ \implies \sf \:x =  \sqrt{25}  \\  \\  \\ \implies  \boxed{\sf \:x =  \pm \: 5}

The value of x is ± 5.

__________________________________

b)

  • If a point is on x - axis , it's y - coordinate is equal to zero.

Let, the x - coordinate be x.

So, the point will be (x , 0).

It is given that:

(x , 0) is equidistant from (2,-5) and (-2,9)

That means;

Distance between (x , 0) and (2 , - 5) = Distance between (x , 0) and (- 2 , 9)

First, we can find the distance between the points seperately and then calculate the coordinates of the point.

Distance between (x , 0) and (2 , - 5) :

Here,

  • x ₁ = x

  • y₁ = 0

  • x₂ = 2

  • y₂ = - 5

Hence,

 \implies \sf \:D =  \sqrt{ {(2 - x)}^{2}  + ( { - 5 - 0)}^{2} }  \\  \\  \\ \implies  \red{ \sf D =  {\sqrt{ {(2 - x)}^{2}  + ( - 5) ^{2} } }}

Now,

Distance between (x , 0) and (- 2 , 9) :

Here,

  • x ₁ = x

  • y₁ = 0

  • x₂ = - 2

  • y₂ = 9

 \implies \sf \: D =  \sqrt{ {( - 2 - x)}^{2}  +(9 - 0) ^{2}  }  \\  \\  \\ \implies  \red{\sf \: D = \sqrt{ {( - 2 - x)}^{2} + ( {9)}^{2}  } }

Now making them equal we get,

 \:  \sf \: \implies \sqrt{ {(2 - x)}^{2}  + ( - 5) ^{2} } = \sqrt{ {( - 2 - x)}^{2} + ( {9)}^{2}  }

Now squaring both sides we get,

 \implies \sf \: (2 - x) ^{2}  + 25 = ( - 2 - x) ^{2}   + 81 \\

using (a - b)² = + - 2ab we get,

 \implies \sf \:  {2}^{2}  +  \cancel{ {x}^{2} } - 2(2)(x) + 25 =  {( - 2)}^{2}  +   \cancel{{x}^{2} } - 2( - 2)(x) + 81 \\  \\  \\ \implies \sf \cancel{ 4} - 4x + 25 =  \cancel{4 }+ 4x + 81 \\  \\  \\ \implies \sf \: 25 - 4x = 81 + 4x \\  \\  \\ \implies \sf \:  25 - 81 = 4x + 4x \\  \\  \\ \implies \sf \:  - 56 = 8x \\  \\  \\ \implies \sf \frac{ - 56}{8}  = x \\  \\  \\ \implies  \boxed{\sf \: x =  - 7}

The required point (x , 0) = ( - 7 , 0).


Anonymous: Ãwēsømê !
VishnuPriya2801: Thank you ! :)
Answered by BarbieBablu
85

Answer:

 \bf(a) \:  \: x = ±5

 \bf(b) \: x  =   - 7

Step-by-step explanation:

 \bf(a)

\bf \: Let  \: the \:  points  \: be

 \bf \: A (-8, x)

 \bf \: B (2, 0)

 \bf \: Applying  \: distance  \: formula,

 \bf \: AB = √[(x₂ - x₁)² + (y₂ - y₁)²]

 \bf \: Here:

 \bf \: x₁ = -8

 \bf \: x₂ = 2

 \bf \: y₁ = x

 \bf \: y₂ = 0

Substitute these values in the above formula

 \bf=  >AB = √[(2 - (-8))² + (0 - x)²]

 \bf =  > AB = √[(2 + 8)² + (-x)²]

 \bf =  >  AB = √[(10)² + x²]

 \bf  =  > AB = √(100 + x²)

  \bf=  > 5√5 = √(100 + x²)

 \bf \: Squaring  \: on \:  both  \: sides,

 \bf (5√5)² = 100 + x²

 \bf =  > 125 = 100 + x²

 \bf =  > 125 - 100 = x²

 \bf =  > x² = 25

  \bf=  > x = √25

\bf∴ x = ±5

__________________________________

 \bf(b)

Let the point be (x, 0) on x–axis which is equidistant from (2, –5) and (–2, 9).

Using Distance Formula and according to given conditions we have:

  \bf \sqrt{(x−2)2+(0−(−5))2}

 \bf= \sqrt{(x−(−2))2+(0−9)2}

 \bf \: Squaring \: both \: sides, \: we \: get

 \bf =  > x2+4−4x+25=x2+4+4x+81

  \bf=  > −4x+29=4x+85

 \bf =  > 8x=−56

 \bf =  > x=−7

Therefore, point on the x–axis which is equidistant from (2, –5) and (–2, 9) is (–7, 0)

Similar questions