Physics, asked by Anonymous, 7 months ago

\mathtt{\bf{\underline{\red{Need\:full\explaination\:}}}}

see this attachment


<marquee scrollamount=1300>ɴᴏ sᴘᴀᴍ❌ </marquee>​​

Attachments:

Answers

Answered by Thatsomeone
12

 \tt Initial\: velocity \:(u) = 0 \: m\:{s}^{-1} \\ \tt Acceleration \: ( a ) = 2\:m\:{s}^{-2} \\ \tt Time\:for\: accelerated\:motion = 10\:s \\ \\ \tt We\:know\:that \\ \\ \tt v = u + at \\ \\ \tt \longmapsto v = 0 + 2 × 10 \\ \\ \tt \longmapsto v = 20 \: m\:{s}^{-1} \\ \\ \boxed{\bold{\underline{\green{\tt The\:maximum\:velocity\:reached\:is\:20\:m\:{s}^{-1}}}}} \\ \\ \tt For\:this\: accelerated\:motion \\ \\ \tt Distance\: travelled\:be\:{s}_{1} \\ \\ \tt {s}_{1} = ut + \frac{1}{2} a{t}^{2} \\ \\ \longmapsto \tt {s}_{1} = 0 + \frac{1}{2} × 2 × 10 \\ \\ \tt \longmapsto {s}_{1} = 20\:m \\ \\ \boxed{\bold{\underline{\red{\tt The\:distance\:travelled\:in\:accelerated\:motion\:is\:10\:m}}}} \\ \\ \tt For\:200\:s\:train\:travel\:for\: constant\:velocity \\ \\ \tt Let\:distance\:travelled\:in\:this\:uniform\:motion\:be\:{s}_{2}\\ \\ \tt {s}_{2} = vt \\ \\ \tt \longmapsto {s}_{2} = 20 × 200 \\ \\ \tt \longmapsto {s}_{2} = 4000 \: m \\ \\ \boxed{\bold{\underline{\red{\tt The\:distance\:travelled\:in\:uniform\:motion\:is\:4000\:m}}}} \\ \\ \tt From\:this\:velocity\:breaks\:are\: applied \\ \\ \tt Now \:Initial\:velocity = 20\:m\:{s}^{-1} \\ \tt Final\:velocity\:(v) = 0 \\ \tt Time\:(t) = 50\:s \\ \\ \tt Using\:the\:same\:formula\\ \\ \tt v = u + at \\ \\ \tt \longmapsto 0 = 20 + a × 50 \\ \\ \tt \longmapsto 50a = -20 \\ \\ \tt \longmapsto a = - \frac{2}{5} \\ \\ \tt \longmapsto a = - 0.4\:m\:{s}^{-2} \\ \\ \boxed{\bold{\underline{\green{\tt The\: retardation\:in\:last\:50\:s\:is\:0.4\:m\:{s}^{-2}}}}} \\ \\ \tt Let\:distance\:travelled\:in\: restarting\:motion\:be\:{s}_{3} \\ \\ \tt \longmapsto {s}_{3} = ut + \frac{1}{2}a{t}^{2} \\ \\ \tt \longmapsto {s}_{3} = 20 × 50 + \frac{1}{2} × 0.4 × 50 × 50 \\ \\ \tt \longmapsto {s}_{3} = 100 + 500 \\ \\ \tt \longmapsto {s}_{3} = 600\:m \\ \\ \boxed{\bold{\underline{\red{\tt Distance\:travelled\:in\:retarding\:motion\:is\:6000\:m }}}}\\ \\ \tt So\:total\:distance\:travelled\:be\:s \\ \\ \tt s = {s}_{1} + {s}_{2} + {s}_{3} \\ \\ \tt \longmapsto s = 20 + 4000 + 600 \\ \\ \tt \longmapsto s = 4620\:m \\ \\ \boxed{\bold{\underline{\green{\tt The\:total\:distance\:travelled\:is\:4620\:m}}}} \\ \\ \tt Total\:distanec\:(s) = 4620 \: m \\ \tt Total\:time = 10 + 200 + 50 = 260\:s \\ \\ \tt Average\:velocity({v}_{arg} = \frac{s}{T} \\ \\ \tt \longmapsto {v}_{arg} = \frac{4620}{260} \\ \\ \tt \longmapsto {v}_{arg} = 17.76\:m\:{s}^{-1} \\ \\ \boxed{\bold{\underline{\green{\tt The\:average\:velocity\:of\:train\:is\:17.76\:m\:{s}^{-1} }}}} \\ \\ \huge{\underline{\underline{\orange{\mathfrak{Niranjan}}}}}

Answered by Anonymous
3

Explanation:

The plasma membrane, also called the cell membrane, is the membrane found in all cells that separates the interior of the cell from the outside environment. ... The plasma membrane consists of a lipid bilayer that is semipermeable. The plasma membrane regulates the transport of materials entering and exiting the cell.

Similar questions