Math, asked by talpadadilip417, 5 hours ago


 \mathtt \purple{if \: y = 1 + x + \frac { x ^ { 2 } } { 2 ! } + \frac { x ^ { 3 } } { 3 ! } + \cdots + \frac { x ^ { n } } { n ! } \:  \: find  \:  \: \frac{dy}{dx}. }
Answer with proper explanation.

Don't spam.


→ Expecting answer from :

★ Moderators
★ Brainly stars and teacher
★ Others best users ​​

Answers

Answered by abhi569
68

Answer:

y - x^n /n!

Step-by-step explanation:

⇒ y = 1 + x + x²/2! + x³/3! + ... + xⁿ/n!

          Differentiate w.r.t x

⇒ y' = d(1 + x + x²/2! + x³/3! + ... + xⁿ/n!)/dx

       = \frac{d}{dx} 1 + \frac{d}{dx}\frac{x}{1 \ !} + \frac{d}{dx}\frac{x^2}{2 \ !}+ \frac{d}{dx}\frac{x^3}{3 \ !} + ... + \frac{d}{dx}\frac{x^n}{n \ !}

       = \frac{d}{dx} 1 + \frac{d}{dx}x + \frac{1}{2 \ !} \frac{d}{dx} x^2+ \frac{1}{3 \ !}\frac{d}{dx}x^3+ ... + \frac{1}{n \ !}\frac{d}{dx}x^n

       = 0 + 1 + \frac{1}{2 \ !} (2x)+ \frac{1}{3 \ !}(3x^2)+ ... + \frac{1}{n \ !} (nx^{n-1})

       = 1 + \frac{1}{2\times 1 \ !} (2x)+ \frac{1}{3 \times 2 \ !}(3x^2)+ ... + \frac{1}{n \times (n-1) \ !} (nx^{n-1})

       = 1 + \frac{1}{1 \ !} x + \frac{1}{2 \ !}(x^2)+ ... + \frac{1}{(n-1) \ !} (x^{n-1})

       = 1 + x  + \frac{x^2}{2 \ !}+ ... + \frac{x^{n-1}}{(n-1) \ !}

       = 1 + x  + \frac{x^2}{2 \ !}+ ... + \frac{x^{n-1}}{(n-1) \ !} +\frac{x^n}{n \ !}- \frac{x^n}{n \ !}

       = y - \frac{x^n}{n \ !}

Therefore,

   \frac{dy}{dx} = y - \frac{x^n}{n \ !}

Using: n! = n * (n - 1)!

      d(x^n)/dx = n * x^(n-1)

*better to be viewed through website/desktop-mode

Answered by Rudranil420
84

Answer:

\qquad\qquad\underline{\textsf{\textbf{ \color{green}{Solution\:completed}  }}}

Question :-

 \sf \pink{if \: y = 1 + x + \dfrac { x ^ { 2 } } { 2 ! } + \dfrac { x ^ { 3 } } { 3 ! } + \cdots + \dfrac { x ^ { n } } { n ! } \: \: find \: \: \dfrac{dy}{dx}. }

Given :-

\sf if \: y = 1 + x + \dfrac { x ^ { 2 } } { 2 ! } + \dfrac { x ^ { 3 } } { 3 ! } + \cdots + \dfrac { x ^ { n }}{ n ! }.

Find Out :-

\sf \dfrac{dy}{dx}.

Solution :-

\red{ \boxed{\sf{\dfrac{dy}{dx} =\: y - \dfrac{x^n}{n!}}}}

[Please refer the attachment for your answer]

Step-by-step explanation:

HOPE IT HELPS YOU :)

Attachments:
Similar questions