Math, asked by talpadadilip417, 5 hours ago



 \mathtt \purple{  \mathtt{\boxed{Find \:  the \:  value : \sin ( \frac { \pi } { 2 } - \cos ^ { - 1 } \frac { 3 } { 7 } ) + \cos ( \frac { 3 \pi } { 2 } - \sin ^ { - 1 } \frac { 2 } { 7 } ) + \cos ( \tan ^ { - 1 } \frac { 7 } { 6 } )}}}
Answer with proper explanation.


Don't spam.


→ Expecting answer from :

★ Moderators
★ Brainly stars and teacher
★ Others best users ​​

Answers

Answered by shahilkumar98102576
0

Step-by-step explanation:

Shahil Kumar roll no.14

Assessment worksheet complete science

Date 30/9/2021

worksheet no.6

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Before we start solving the problem, Let's recall the formula's to be used

\boxed{\tt{ cos( {cos}^{ - 1}x) = x \:  \:  \: when \:  - 1 \leqslant x \leqslant 1}}

\boxed{\tt{ sin( {sin}^{ - 1}x) = x \:  \:  \: when \:  - 1 \leqslant x \leqslant 1}}

\boxed{\tt{ sin\bigg[\dfrac{\pi}{2} - x \bigg] = cosx}}

\boxed{\tt{cos\bigg[\dfrac{3\pi}{2} - x \bigg] =  - sinx}}

\boxed{\tt{  {tan}^{ - 1} \frac{y}{x}  \:  =  \:  {cos}^{ - 1} \frac{x}{ \sqrt{ {x}^{2}  +  {y}^{2} }  \: }}}

Let's solve the problem now!!

Consider, the expression

\rm :\longmapsto\:\sin\bigg( \dfrac { \pi } { 2 } - \cos ^ { - 1 } \dfrac { 3 } { 7 }\bigg) + \cos \bigg( \dfrac { 3 \pi } { 2 } - \sin ^ { - 1 } \dfrac { 2 } { 7 }\bigg ) + \cos\bigg ( \tan ^ { - 1 } \dfrac { 7 } { 6 }\bigg)

 \rm = \cos\bigg(\cos^ { - 1 } \dfrac { 3 } { 7 }\bigg)  - \sin \bigg(\sin ^ { - 1 } \dfrac { 2 } { 7 }\bigg ) + \cos\bigg ( \cos^ { - 1 } \dfrac {6} {  \sqrt{ {7}^{2}  +  {6}^{2} } }\bigg)

 \rm  \: = \:  \dfrac { 3 } { 7 }  -  \dfrac { 2 } { 7 } +  \dfrac {6} {  \sqrt{ 49 + 36 }}

 \rm  \: = \:  \dfrac { 3  - 2} { 7 } +  \dfrac {6} {  \sqrt{ 85 }}

 \rm  \: = \:  \dfrac {1} { 7 } +  \dfrac {6} {  \sqrt{ 85 }}

 \rm  \: = \:  \dfrac {1} { 7 } +  \dfrac {6} {  \sqrt{ 85 }} \times \dfrac{ \sqrt{85} }{ \sqrt{85} }

 \rm  \: = \:  \dfrac {1} { 7 } +  \dfrac {6 \sqrt{85} } {85}

 \rm  \: = \: \dfrac {85 + 42 \sqrt{85} } {595}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know

\boxed{\sf{  {sin}^{ - 1}x +  {sin}^{ - 1}y =  {sin}^{ - 1}[x \sqrt{1 -  {y}^{2} }  + y \sqrt{1 -  {x}^{2} } ]}}

\boxed{\sf{  {sin}^{ - 1}x  -  {sin}^{ - 1}y =  {sin}^{ - 1}[x \sqrt{1 -  {y}^{2} }  - y \sqrt{1 -  {x}^{2} } ]}}

\boxed{\sf{  {cos}^{ - 1}x  -  {cos}^{ - 1}y =  {sin}^{ - 1}[x y + \sqrt{1 -  {y}^{2} } \sqrt{1 -  {x}^{2} } ]}}

\boxed{\sf{  {cos}^{ - 1}x  +  {cos}^{ - 1}y =  {sin}^{ - 1}[x y  -  \sqrt{1 -  {y}^{2} } \sqrt{1 -  {x}^{2} } ]}}

\boxed{\sf{{2tan}^{ - 1}x =  {sin}^{ - 1} \frac{2x}{1-{x}^{2} } =  {tan}^{ - 1} \frac{2x}{1-{x}^{2}} =  {cos}^{ - 1} \frac{1 -  {x}^{2} }{1 +  {x}^{2} }}}

Similar questions