Math, asked by OoAryanKingoO78, 5 hours ago


 \mathtt \purple{ \mathtt{\boxed{Find \: the \: value : \sin ( \frac { \pi } { 2 } - \cos ^ { - 1 } \frac { 3 } { 7 } ) + \cos ( \frac { 3 \pi } { 2 } - \sin ^ { - 1 } \frac { 2 } { 7 } ) + \cos ( \tan ^ { - 1 } \frac { 7 } { 6 } )}}}

Answer with proper explanation.


Don't spam.

→ Expecting answer from :

★ Moderators
★ Maths AryaBhatta
★ Brainly stars and teacher
★ Others best users ​

Answers

Answered by XxitzZBrainlyStarxX
5

Question:-

 \sf \large{Find \: the \: value : sin ( \frac { \pi } { 2 } - cos ^ { - 1 } \frac { 3 } { 7 } ) + cos ( \frac { 3 \pi } { 2 } - sin ^ { - 1 } \frac { 2 } { 7 } ) + cos ( tan ^ { - 1 } \frac { 7 } { 6 } )}.

Given:-

 \sf \large{ sin ( \frac { \pi } { 2 } - cos ^ { - 1 }  \:  \: \frac { 3 } { 7 } ) + cos  ( \frac { 3 \pi } { 2 } - sin  ^ { - 1 }  \:  \: \frac { 2 } { 7 } ) + cos ( tan ^ { - 1 } \:  \:  \frac { 7 } { 6 } )}.

To Find:-

  •  \sf \large Value  \: of  \:  \sf \large{ sin ( \frac { \pi } { 2 } - cos ^ { - 1 } \frac { 3 } { 7 } ) + cos ( \frac { 3 \pi } { 2 } - sin ^ { - 1 } \frac { 2 } { 7 } ) + cos ( tan ^ { - 1 } \frac { 7 } { 6 } )}.

Solution:-

 \sf \large{ sin ( \frac { \pi } { 2 } - cos ^ { - 1 }  \:  \: \frac { 3 } { 7 } ) + cos  ( \frac { 3 \pi } { 2 } - sin  ^ { - 1 }  \:  \: \frac { 2 } { 7 } ) + cos ( tan ^ { - 1 } \:  \:  \frac { 7 } { 6 } )}.

 \sf \large = cos(cos {}^{ - 1} ( \frac{3}{7} ) + sin(sin {}^{ - 1} ( \frac{2}{7} )) + cos(cos {}^{ - 1} ( \frac{6}{\sqrt{85} } ).

 \sf \large =  \frac{3}{7}  -  \frac{2}{7}  +  \frac{6}{ \sqrt{85} } .

 \sf \large =  \frac{1}{7}  +  \frac{6}{85} .

Formula Used:-

\sf \large sin {}^{ - 1}(sin \: x) = x . \\  \\\sf \large cos {}^{ - 1} (cos \: x) = x. \\ \\  \sf \large tan \: x =  \frac{7}{6} . \\ \\  \sf \large cos \: x =  \frac{6}{ \sqrt{85} }  =  > x = cos {}^{ - 1} ( \frac{6}{ \sqrt{85} } ).

Answer:-

{ \boxed{ \sf \large \color{yellow}{ sin ( \frac { \pi } { 2 } - cos ^ { - 1 }  \:  \: \frac { 3 } { 7 } ) + cos  ( \frac { 3 \pi } { 2 } - sin  ^ { - 1 }  \:  \: \frac { 2 } { 7 } ) + cos ( tan ^ { - 1 } \:  \:  \frac { 7 } { 6 } )} = </p><p> =  \frac{1}{7}  +  \frac{6}{ \sqrt{85} } }}

Hope you have satisfied.

Answered by ΙΙïƚȥΑαɾყαɳΙΙ
0

{\large{\underbrace{\mathbb{\pink{ ANSWER\: \:-: }}}}}

Question:-

 \tt \large{Find \: the \: value : sin ( \frac { \pi } { 2 } - cos ^ { - 1 } \frac { 3 } { 7 } ) + cos ( \frac { 3 \pi } { 2 } - sin ^ { - 1 } \frac { 2 } { 7 } ) + cos ( tan ^ { - 1 } \frac { 7 } { 6 } )}.

Given:-

 \tt \large{ sin ( \frac { \pi } { 2 } - cos ^ { - 1 }  \:  \: \frac { 3 } { 7 } ) + cos  ( \frac { 3 \pi } { 2 } - sin  ^ { - 1 }  \:  \: \frac { 2 } { 7 } ) + cos ( tan ^ { - 1 } \:  \:  \frac { 7 } { 6 } )}.

To Find:-

 \tt \large Value  \: of  \:  \sf \large{ sin ( \frac { \pi } { 2 } - cos ^ { - 1 } \frac { 3 } { 7 } ) + cos ( \frac { 3 \pi } { 2 } - sin ^ { - 1 } \frac { 2 } { 7 } ) + cos ( tan ^ { - 1 } \frac { 7 } { 6 } )}.

Solution:-

 \tt \large{ sin ( \frac { \pi } { 2 } - cos ^ { - 1 }  \:  \: \frac { 3 } { 7 } ) + cos  ( \frac { 3 \pi } { 2 } - sin  ^ { - 1 }  \:  \: \frac { 2 } { 7 } ) + cos ( tan ^ { - 1 } \:  \:  \frac { 7 } { 6 } )}.

 \tt\large = cos(cos {}^{ - 1} ( \frac{3}{7} ) + sin(sin {}^{ - 1} ( \frac{2}{7} )) + cos(cos {}^{ - 1} ( \frac{6}{\sqrt{85} } ).

 \tt \large =  \frac{3}{7}  -  \frac{2}{7}  +  \frac{6}{ \sqrt{85} } .

 \tt \large =  \frac{1}{7}  +  \frac{6}{85} .

Formula Used:-

\tt \large sin {}^{ - 1}(sin \: x) = x . \\  \\\tt \large cos {}^{ - 1} (cos \: x) = x. \\ \\  \tt \large tan \: x =  \frac{7}{6} . \\ \\  \tt \large cos \: x =  \frac{6}{ \sqrt{85} }  =  &gt; x = cos {}^{ - 1} ( \frac{6}{ \sqrt{85} } ).

Final Answer:-

{ \boxed{ \rm \large \color{pink}{ sin ( \frac { \pi } { 2 } - cos ^ { - 1 }  \:  \: \frac { 3 } { 7 } ) + cos  ( \frac { 3 \pi } { 2 } - sin  ^ { - 1 }  \:  \: \frac { 2 } { 7 } ) + cos ( tan ^ { - 1 } \:  \:  \frac { 7 } { 6 } )} = </p><p> =  \frac{1}{7}  +  \frac{6}{\sqrt{85}}}}

Similar questions