Math, asked by Diliptalapda, 15 hours ago


 \mathtt\red{ if \: f'(x) = 1 -  \frac{4}{ {x}^{2} }  \: and \: f(1) = 6 \: find \: f(x) \: and \: f(2).}
Answer with proper explanation.

The correct respondent will get 100+ thanks.


Don't spam.


→ Expecting answer from :

★ Moderators
★ Brainly stars and teacher
★ Others best users ​​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f'(x) = 1 - \dfrac{4}{ {x}^{2} }

On integrating both sides w. r. t. x, we get

\rm :\longmapsto\:\displaystyle\int\rm f'(x) dx=\displaystyle\int\rm \bigg[ 1 - \dfrac{4}{ {x}^{2} }\bigg] \: dx

\rm :\longmapsto\:f(x)  = \displaystyle\int\rm 1 \: dx \:  - 4\displaystyle\int\rm  {x}^{ - 2}  \: dx

We know that

\boxed{\tt{ \displaystyle\int\rm  {x}^{n}  \: dx \:  =  \:  \frac{ {x}^{n + 1} }{n + 1} \:  +  \: c \: }}

So, using this identity, we get

\rm :\longmapsto\:f(x) = x - 4 \bigg[\dfrac{ {x}^{ - 2 + 1} }{ - 2 + 1} \bigg]  + c

\rm :\longmapsto\:f(x) = x - 4 \bigg[\dfrac{ {x}^{ - 1} }{ - 1} \bigg]  + c

\bf :\longmapsto\:f(x) = x  + \dfrac{4}{x}  + c

Now, Given that

\red{\rm :\longmapsto\:f(1) = 6}

\rm :\longmapsto\:1 + \dfrac{4}{1}  + c = 6

\rm :\longmapsto\:1 +4  + c = 6

\rm :\longmapsto\:5  + c = 6

\bf\implies \:c = 1

So,

\bf\implies \:f(x) = x + \dfrac{4}{x}  + 1

Now,

\bf\implies \:f(2) = 2 + \dfrac{4}{2}  + 1 = 5

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by Anonymous
0

Answer:

thanks dear

Step-by-step explanation:

bye_____

___%

___

Similar questions