Math, asked by TrustedAnswerer19, 1 month ago

mimcool786\: \:see\:the\:attachment

prove \: that \: \: \\ \\ \displaystyle \int_0^1 \frac{dx}{ \sqrt{2x - {x}^{2} } } = \frac{\pi}{2} \:

solve that with proper explanation.

Answers

Answered by hukam0685
80

Step-by-step explanation:

Given:

 \int_0^1 \frac{dx}{ \sqrt{2x - {x}^{2} } } = \frac{\pi}{2} \:\\

To find: Prove

Solution:

To prove it,take LHS and integrate it.

\int_0^1 \frac{dx}{ \sqrt{2x - {x}^{2} } }\\

Completing the square

\int_0^1 \frac{dx}{ \sqrt{2x - {x}^{2} } } = \int_0^1 \frac{dx}{ \sqrt{ - ({x}^{2}  - 2x + 1 - 1)} } \\  \\  \implies\int_0^1 \frac{dx}{ \sqrt{ - ({x}^{2}  - 2x + 1)  + 1} } \\  \\  \implies\int_0^1 \frac{dx}{ \sqrt{ - ({x} -1)^{2}   + 1 } } \\  \\ \\  \implies\int_0^1 \frac{dx}{ \sqrt{ 1- ({x} -1)^{2}  } }

Let

x - 1 = t \\  \\ dx = dt \\  \\

Do substitution and integrate

   \int \frac{dt}{ \sqrt{1 -  {t}^{2} } }  = sin^{ - 1} t \\  \\

as it is direct formula.

Undo substitution and place the limits

 =  {sin}^{ - 1} (x - 1)  \bigg|_0^{1}  \\  \\  = {sin}^{ - 1} ( 1 - 1) - {sin}^{ - 1}(0 - 1)  \\ \\  = {sin}^{ - 1} ( 0) - {sin}^{ - 1}(- 1) \\  \\  = {sin}^{ - 1} ( sin \: 0)  +  {sin}^{ - 1}( sin \frac{\pi}{2} ) \\  \\  = 0 +  \frac{\pi}{2}  \\  \\  = \frac{\pi}{2} \\  \\  = R.H.S.\\  \\

Final answer:

It has been proved that

 \int_0^1 \frac{dx}{ \sqrt{2x - {x}^{2} } } = \frac{\pi}{2} \:\\

Hope it helps you.

To learn more on brainly:

1) integral of cosec square x /1 +cot x

https://brainly.in/question/2080621

2)Integrate the function w..r. to x : log x

https://brainly.in/question/6638950

Similar questions