Math, asked by llxxkrithikaxxll, 1 month ago


❒Moderators \\ \  \textless \ br /\  \textgreater \ ❒BrainlyStars  \\ ❒OtherBestUsers
How many terms of the series 13 + 23 + 33 + … should be taken to get the sum 14400?​

Answers

Answered by Anonymous
56

 \sf{ {1}^{3} +  {2}^{3} +   {3}^{3}  + _\dots +  {n}^{3}  = 14400}

 =  \sf{ \bigg( \dfrac{n(n + 1)}{2}  \bigg)^{2} } = 14400 = (120)^{2}

 =  \sf{  \dfrac{n(n + 1)}{2}  } =  \sqrt{14400 }= 120

 \sf{ = n(n + 1) = 240}

Method 1:-

 \sf{ =  {n}^{2}  + n - 240 = 0}

 \sf{ {n}^{2}  + 16n - 15n - 240 = 0}

 =  \sf{n(n + 16) - 15(n  + 16) = 0}

  \sf{(n + 16)(n - 15) = 0}

 \sf{n + 16 = 0}

 \sf{n =  - 16}

 \sf{n - 15 = 0}

 \sf{n = 15}

 \bigstar { \underline{\boxed{\textsf{∴ 15 terms to be taken to get the sum 14400.} }}} \bigstar

Method 2:-

 \sf{ {n}^{2}  + n - 240 = 0}

  \sf{n = \dfrac{ - b ± \sqrt{ {b}^{2}  - 4ac} }{2a} }

 \sf{ =  \dfrac{   - 1±\sqrt{1 -4 \times 1 + ( - 240) } }{2 \times 1}}

 \sf{ =   \dfrac{  - 1 \: ± \: \sqrt{961} }{2}}

 \sf{ =  \dfrac{ - 1 \: ± \: 31}{2}}

 \sf{ =  \dfrac{ - 1  + 31}{2}} \: or \:  \dfrac{ - 1   - 31}{2}

 =  \sf{\dfrac{30}{2}  \: or \:\dfrac{ - 32 }{2}}

 =  \sf{  \cancel\dfrac{30}{2}  \: or \:  \cancel\dfrac{ - 32 }{2}}

 \sf{n = 15 \: or \: n =  - 16}

\sf{n  \: cannot  \: be = - 16}

 \dashrightarrow \underline{ \boxed{ \therefore \frak \pink{n = 15}}}\bigstar

Answered by WiIdBoy
58

Answer :—

15th term .

Solution :—

 \sf{ =  {n}^{2}  + n - 240 = 0}

 = \sf{ {n}^{2}  + 16n - 15n - 240 = 0}

 =  \sf{n(n + 16) - 15(n  + 16) = 0}

  = \sf{(n + 16)(n - 15) = 0}

 = \sf{n + 16 = 0}

 = \sf{n =  - 16}

 = \sf{n - 15 = 0}

 = \sf{n = 15}

Therefore , 15 terms to be taken to get the sum 14400.

Similar questions