Math, asked by AniketJain, 1 year ago

n = \sqrt{p + 2q \: } \: + \sqrt{p - 2q } \div \sqrt{p + 2q} - \sqrt{p - 2q}
is given than prove that
qn {}^{2} - pn + q = 0


AniketJain: plz solve this sum

Answers

Answered by saurabhsemalti
1

n =  \frac{ \sqrt{p + 2q} +  \sqrt{p - 2q}  }{ \sqrt{p + 2q}  -  \sqrt{p - 2q} }  \\ rationalise \:  \\ n =  \frac{( \sqrt{p + 2q}  +  \sqrt{p - 2q}) {}^{2}  }{p + 2q - p +2q}  \\ 4nq = p + 2q + p - 2q + 2 \sqrt{ {p}^{2} - 4 {q}^{2}  }  \\ 4nq = 2p + 2 \sqrt{p {}^{2} - 4 {q}^{2}  }  \\ (2nq - p) =  \sqrt{p {}^{2} - 4 {q}^{2}  }  \\ square \\ (4 {n}^{2}  {q}^{2}  + p {}^{2}  - 4pnq) =  {p}^{2}  - 4q {}^{2}  \\ 4n {}^{2}  {q}^{2}  - 4npq =  - 4 {q}^{2}  \\  {n}^{2} q - np =  - q
mark as brainliest if helped
Similar questions