If A = 2xi + 3yj + 4zk and u = x² + y² + z² , then div(uA) at (1,1,1) is ? ( 2 m )
Answers
Answered by
11
Given A = 2xi + 3yj + 4zk and u = x²+y²+z²
Note : div(A) = ∇.A and grad(u) = ∇A
We have a vector identity ,
∇.(fB) = ∇f.B + f∇.B
where ,
f is a scalar and B is a vector quantity
Here we have a scalar quantity , u = x²+y²+z² and vector quantity A = 2xi+3yj+4zk
So , ∇.(uA) = ∇u.A + u∇.A
Lets calculate ∇u ,
Lets calculate ∇.A
So ∇.(uA) ,
∇u.A + u∇.A
At (1,1,1)
So , div(uA) at (1,1,1) is 45
Similar questions