Math, asked by BrainlyElon, 7 days ago

\orange{\rm GATE\ 2019\ EE}
If A = 2xi + 3yj + 4zk and u = x² + y² + z² , then div(uA) at (1,1,1) is ? ( 2 m )

Answers

Answered by BrainlyIAS
11

Given A = 2xi + 3yj + 4zk and u = x²+y²+z²

Note : div(A) = ∇.A and grad(u) = ∇A

We have a vector identity ,

∇.(fB) = ∇f.B + f∇.B

where ,

f is a scalar and B is a vector quantity

Here we have a scalar quantity , u = x²+y²+z² and vector quantity A = 2xi+3yj+4zk

So , ∇.(uA) = ∇u.A + u∇.A

Lets calculate ∇u ,

\longrightarrow \sf \qquad grad(u)

\longrightarrow \sf \dfrac{\partial u}{\partial x} i + \dfrac{\partial u}{\partial y} j + \dfrac{\partial u}{\partial z} k

\longrightarrow \sf 2x i+2yj+2zk

Lets calculate ∇.A

\longrightarrow \sf \qquad div(A)

\longrightarrow \sf \dfrac{\partial }{\partial x}(2x) + \dfrac{\partial }{\partial x}(3y)+\dfrac{\partial }{\partial x}(4z)

\longrightarrow \quad 2+3 + 4

\longrightarrow \quad 9

So ∇.(uA) ,

\longrightarrow ∇u.A + u∇.A

\longrightarrow \sf (2xi+2yj+2zk).(2xi+3yj+4zk) + (x^2+y^2+z^2)(9)

\longrightarrow \sf (4x^2+6y^2+8z^2) + (9x^2+9y^2+9z^2)

\longrightarrow \sf 13x^2+15y^2+17z^2

At (1,1,1)

\longrightarrow \sf 13(1)^2+15(1)^2+17(1)^2

\longrightarrow \sf 45

So , div(uA) at (1,1,1) is 45

Similar questions