Math, asked by iffathtasneem1, 18 days ago


 {p}^{2}  = 4 \sqrt{5}  + 9
what is the value of P? ​

Answers

Answered by ankitapurkait91
0

Answer:

Verification of answer :-

To verify your answer put p = 12 in p/2+2=8. If you get RHS = LHS then your answer is correct.

Step-by-step explanation:

Thank you

Hope it helps to you

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

As it is given that,

\rm \:  {p}^{2} = 4 \sqrt{5} + 9 \\

can be re-arranged as

\rm \:  {p}^{2} = 9 +  4 \sqrt{5} \\

can be rewritten as

\rm \:  {p}^{2} = 5 + 4 +  4 \sqrt{5} \\

\rm \:  {p}^{2} =  {( \sqrt{5} )}^{2}  +  {2}^{2}  +  4 \sqrt{5} \\

\rm \:  {p}^{2} =  {( \sqrt{5} )}^{2}  +  {2}^{2}  +  2 \times  \sqrt{5} \times 2 \\

We know,

\boxed{ \rm{ \: {x}^{2} +  {y}^{2} + 2xy =  {(x + y)}^{2}  \: }} \\

So, using this identity, we get

\rm \:  {p}^{2} =  {( \sqrt{5}  + 2)}^{2}  \\

\rm\implies \:p \:  =  \:  \pm \: ( \sqrt{5} + 2) \\

\rm\implies \:p \:  =  \: \sqrt{5} + 2 \:  \:  \: or \:  \:  \:  -  \sqrt{5} - 2  \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: identities}}}} \\ \\ \bigstar \: \bf{ {(x + y)}^{2} =  {x}^{2}  + 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {(x - y)}^{2}  =  {x}^{2} - 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {x}^{2} -  {y}^{2} = (x + y)(x - y)}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  -  {(x - y)}^{2}  = 4xy}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  +  {(x - y)}^{2}  = 2( {x}^{2}  +  {y}^{2})}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y)}\:\\ \\ \bigstar \: \bf{ {(x - y)}^{3} =  {x}^{3} -  {y}^{3} - 3xy(x - y) }\:\\ \\ \bigstar \: \bf{ {x}^{3}  +  {y}^{3} = (x + y)( {x}^{2}  - xy +  {y}^{2} )}\: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions