Physics, asked by guuda, 1 year ago


p \:  =  \:  \frac{ \alpha }{ \beta } {e}^{ \frac{ \alpha z}{k \infty } }   \\  \\ here \: p \:  =  \: pressure \\ z =  \: length \\   \infty  \:  =  \: temperature \\ k =  \: boltzmann \: constant \\  \\  \\ find \: the \: dimensions \: o f \:  \alpha  \: and  \: \beta

Answers

Answered by AdityaRocks1
15
Hello mate.

Thanks for asking this question.

Your answer is =>

As you know , the index of any number or any quantity is a dimensionless quantity.

so ,

 =>\frac {\alpha z}{k \infty } = {{[M^{0} L^{0} T^{0}]}}

here is

M = mass

L = length

T = time

but we know that ,

 a^{0}\:=\:1\:

so ,

 =>\frac { \alpha z }{k \infty}\:=\:1

 => \alpha\:=\: \frac {k \infty }{z}

but , k = Boltzman constant

k = \: [ M^{1}L^{2}T^{-2} \infty^{-1}]

z = length

 z\:=\: [L^{1}]

 \infty = temperature

 \infty \:= [ \infty^{1}]

so ,

\alpha \: = \:\frac{[M^{1}L^{\cancel {2}}T^{-2} \cancel {\infty{-1}}][\cancel {\infty^{+1}}]}{[ \cancel {L^{1}}]}

 \boxed {\alpha \:=\: [ M^{1}L^{1}T^{-2}]}

in the given equation ,

 \boxed {e^{\frac {\alpha z}{k \infty}}\:=\:constant}

so , we do not consider the dimensions of this equation as it becomes a dimensionless quantity.

hence ,

 =>P \:=\: \frac { \alpha}{ \beta}

=>\: \beta = \frac {\alpha}{P}

P = pressure
 P \:=\: [M^{1}L^{-1}T^{-2}]

=>\:\beta =\:\frac {[M^{1}L^{1} T^{-2}]}{[M^{1}L^{-1}T^{-2}]}

 =>\: \boxed {\beta\:=\:[M^{0}L^{2}T^{0}]}



#BeBRAINLY
#BeHAPPY

guuda: great yaar.....
guuda: ekdum correct answer...:)
Similar questions