Math, asked by lakshay1527, 6 months ago


p(x) =  - 3x{3} + kx2 - 8x + 10 \\ zero = 2 \\ find \: k

Answers

Answered by amankumaraman11
0

Given,

 \rm{}p(x) =  { - 3x}^{3}  +  {kx}^{2}  - 8x + 10

  • One of Zeroes of this polynomial is 2

To find : The value of k

↓ Solution →

Putting the value of x in p(x), we get,

 \rm \to { - 3(2)}^{3}  +  {k(2)}^{2}  - 8(2) + 10 = 0 \\  \rm \to   \:  \: - 24 + 4k - 16 + 10 = 0 \\  \rm \to \:  \: 4k + (10 - 24 - 16) = 0 \\   \rm \to \:  \:  \:  \: 4k =  \:  \:  - (10 - 24 - 16) \\  \rm \to \:  \:  \:  \:  \: 4k =   \:  \:  \: - (10 - 40) \\  \rm \to \:  \:  \:  \: 4k = \:  \:  40 - 10 \\   \rm \to \:  \:  \:  \:  \: 4k =  \:  \: 30 \\  \\  \rm \to \frac{4k}{4}  =  \frac{30}{4}  \\  \\  \rm \to \:  \:  \:  \: k =  7\frac{2}{4}  \\  \\   \rm \to \:  \:  \:  \:  \: k = 7 \frac{1}{2}  \\  \\   \rm \to  \boxed{ \sf\:  \:  \:  \:  \: k = 7.5}

Answered by BrainlyFlash156
23

\huge\mathcal{\fcolorbox{cyan}{black}{\pink{ĄNsWeR࿐}}}

Given,

 \rm{}p(x) =  { - 3x}^{3}  +  {kx}^{2}  - 8x + 10

One of Zeroes of this polynomial is 2

To find : The value of k

↓ Solution →

Putting the value of x in p(x), we get,

 \rm \to { - 3(2)}^{3}  +  {k(2)}^{2}  - 8(2) + 10 = 0 \\  \rm \to   \:  \: - 24 + 4k - 16 + 10 = 0 \\  \rm \to \:  \: 4k + (10 - 24 - 16) = 0 \\   \rm \to \:  \:  \:  \: 4k =  \:  \:  - (10 - 24 - 16) \\  \rm \to \:  \:  \:  \:  \: 4k =   \:  \:  \: - (10 - 40) \\  \rm \to \:  \:  \:  \: 4k = \:  \:  40 - 10 \\   \rm \to \:  \:  \:  \:  \: 4k =  \:  \: 30 \\  \\  \rm \to \frac{4k}{4}  =  \frac{30}{4}  \\  \\  \rm \to \:  \:  \:  \: k =  7\frac{2}{4}  \\  \\   \rm \to \:  \:  \:  \:  \: k = 7 \frac{1}{2}  \\  \\   \rm \to  \boxed{ \sf\:  \:  \:  \:  \: k = 7.5}

Similar questions