Math, asked by kamalhajare543, 1 month ago


\pink{(cot A - cosec A )² = \frac{1- cos A}{1+ cos A}}(cotA−cosecA)²
Spamming Not allowed
Solve it. ​

Answers

Answered by mathdude500
11

\large\underline{\sf{Given \: appropriate \:Question - }}

Prove that

\rm :\longmapsto\: {(cotA - cosecA)}^{2}  = \dfrac{1 - cosA}{1 + cosA}

\large\underline{\sf{Solution-}}

Consider RHS

\rm :\longmapsto\: {(cotA - cosecA)}^{2}

can be rewritten as

\rm \:  =  \:  {\bigg( - (cosecA - cotA)\bigg) }^{2}

\rm \:  = \: {(cosecA - cotA)}^{2}

We know,

\red{ \boxed{ \sf{ \:cotx =  \frac{cosx}{sinx}}}} \:  \: and \:  \: \red{ \boxed{ \sf{ \:cosecx =  \frac{1}{sinx}}}}

\rm \:  =  \:  {\bigg[\dfrac{1}{sinA} - \dfrac{cosA}{sinA}  \bigg]}^{2}

\rm \:  =  \:  {\bigg[\dfrac{1 - cosA}{sinA}\bigg]}^{2}

\rm \:  =  \: \dfrac{ {(1 - cosA)}^{2} }{ {sin}^{2} A}

We know,

\red{ \boxed{ \sf{ \: {sin}^{2}x +  {cos}^{2}x = 1}}}

\rm \:  =  \: \dfrac{ {(1 - cosA)}^{2} }{ 1 - {cos}^{2} A}

\rm \:  =  \: \dfrac{ {(1 - cosA)}^{2} }{(1 - cosA)(1 + cosA)}

\rm \:  =  \: \dfrac{1 - cosA}{1 + cosA}

Hence,

\rm :\longmapsto\: \red{ \boxed{ \sf{ \:{(cotA - cosecA)}^{2}  = \dfrac{1 - cosA}{1 + cosA}}}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions