Math, asked by GoodCharm, 2 months ago


 \pink{ \huge \mathbb{Q} \sf{uestion}}
Without solving comment upon the nature of roots of each of the following equation:

\sf {6x}^{2}  - 13x + 4 = 0

♨️No spam \red\checkmark
♨️no plagiarism[tex]\pink\checkmark[/tex
-_-​

Answers

Answered by WildCat7083
7

\huge\ \pmb{\red{«\: คꈤ \mathfrak Sฬєя \: » }}

6x  ^ { 2  }  -13x+4

  • Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and  \: x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0

6x^{2}-13x+4=0

  • All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula : \frac{-b±\sqrt{b^{2}-4ac}}{2a}The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.

x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 6\times 4}}{2\times 6}  \\  \\ x=\frac{-\left(-13\right)±\sqrt{169-4\times 6\times 4}}{2\times 6} \\  \\ x=\frac{-\left(-13\right)±\sqrt{169-24\times 4}}{2\times 6} \\  \\ x=\frac{-\left(-13\right)±\sqrt{169-24\times 4}}{2\times 6}  \\  \\ x=\frac{-\left(-13\right)±\sqrt{169-96}}{2\times 6} \\  \\ x=\frac{-\left(-13\right)±\sqrt{73}}{2\times 6}  \\  \\ x=\frac{13±\sqrt{73}}{2\times 6}  \\  \\ x=\frac{13±\sqrt{73}}{12}  \\  \ \\ x=\frac{\sqrt{73}+13}{12} \\  \\ x=\frac{13-\sqrt{73}}{12}

  • Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right).

  • Substitute \frac{13+\sqrt{73}}{12}  \: for \:  x_{1}  \: and  \: \frac{13-\sqrt{73}}{12}  \: for \:  x_{2}.

6x^{2}-13x+4=6\left(x-\frac{\sqrt{73}+13}{12}\right)\left(x-\frac{13-\sqrt{73}}{12}\right)

\:  \:  \:  \:  \:  \:  \:  \:  \:  \: \huge \bold{@WildCat7083 } \\

Answered by AbhinavRocks10
3

Step-by-step explanation:

  • (6x)2−13x+4=0
  • Step 1: Simplify both sides of the equation.

36x2−13x+4=0

Step 2: Find discriminant with a=36, b=-13, c=4.

b2−4ac

=(−13)2−4(36)(4)

=−407

Answer:

−407

Similar questions