Math, asked by ItsBrainest, 3 months ago


please \: answer \: it \: and \: dont \: spam \: please.

Attachments:

Answers

Answered by Anonymous
4

Step-by-step explanation:

I think this answer is helpful for you

Attachments:
Answered by Anonymous
12

Question :

If \sf{\left[\begin{array}{c c c}1 & 4 \\ -2 & 3\end{array}\right] + 2M = 3\left[\begin{array}{c c c}3 & 2 \\ 0 & -3\end{array}\right]}, find the value of Matrix M.

Explanation :

Given :

  • \sf{\left[\begin{array}{c c c}1 & 4 \\ -2 & 3\end{array}\right] + 2M = 3\left[\begin{array}{c c c}3 & 2 \\ 0 & -3\end{array}\right]}

To find :

  • The value of matrix M.

Solution :

:\implies \sf{\left[\begin{array}{c c c}1 & 4 \\ -2 & 3\end{array}\right] + 2M = 3\left[\begin{array}{c c c}3 & 2 \\ 0 & -3\end{array}\right]} \\ \\ \\ :\implies \sf{\left[\begin{array}{c c c}1 & 4 \\ -2 & 3\end{array}\right] + 2M = \left[\begin{array}{c c c}3 \times 3 & 2 \times 3 \\ 0 \times 3 & -3 \times 3\end{array}\right]} \\ \\ \\ :\implies \sf{\left[\begin{array}{c c c}1 & 4 \\ -2 & 3\end{array}\right] + 2M = \left[\begin{array}{c c c}9 & 6 \\ 0 & -9\end{array}\right]} \\ \\ \\ :\implies \sf{2M = \left[\begin{array}{c c c}9 & 6 \\ 0 & -9\end{array}\right] - \left[\begin{array}{c c c}1 & 4 \\ -2 & 3\end{array}\right]} \\ \\ \\ :\implies \sf{2M = \left[\begin{array}{c c c}9 - 1 & 6 - 4 \\ 0 - (-2) & -9 - 3\end{array}\right]} \\ \\ \\ :\implies \sf{2M = \left[\begin{array}{c c c}8 & 2 \\ 2 & -12\end{array}\right]} \\ \\ \\ :\implies \sf{M = \dfrac{1}{2} \times \left[\begin{array}{c c c}8 & 2 \\ 2 & -12\end{array}\right]}  \\ \\ \\ :\implies \sf{M = \left[\begin{array}{c c c}8 \times \dfrac{1}{2} & 2 \times \dfrac{1}{2} \\ \\ \\ 2 \times \dfrac{1}{2} & -12 \times \dfrac{1}{2}\end{array}\right]} \\ \\ \\ :\implies \sf{M = \left[\begin{array}{c c c}\not{8} \times \dfrac{1}{\not{2}} & \not{2} \times \dfrac{1}{\not{2}} \\ \\ \not{2} \times \dfrac{1}{\not{2}} & \not{-12} \times \dfrac{1}{\not{2}}\end{array}\right]} \\ \\ \\ :\implies \sf{M = \left[\begin{array}{c c c}4 & 1 \\ 1 & -6\end{array}\right]} \\ \\ \\

\boxed{\therefore \sf{M = \left[\begin{array}{c c c}4 & 1 \\ 1 & -6\end{array}\right]}} \\ \\

Hence the value of matrix M is \sf{\left[\begin{array}{c c c}4 & 1 \\ 1 & -6\end{array}\right]}


BrainIyMSDhoni: Great :)
Similar questions