Math, asked by ItsBrainest, 6 months ago


please \: answer \: only \: the \: circle \: ones \: please

Attachments:

Answers

Answered by MissSolitary
3

  :  \rightarrow \underline{ \underline{ \mathfrak{Required  \:  \:  \: Solution :-}}}

--------------------------

 \sf \: If \: 2\left [ \begin{array}{c c } \sf  3& \sf x \\\\ \sf \: 0& \sf \: 1 \end{array} \right]  + 3 \left[ \begin{array}{c c } \sf  1& \sf 3 \\\\ \sf \: y& \sf \: 2 \end{array} \right]  =\left[ \begin{array}{c c } \sf  z& \sf  - 7 \\\\ \sf \: 15& \sf \: 8\end{array} \right]  ;

find the values of x , y and z.

  {\huge{⇾}}\left[ \begin{array}{c c } \sf  6& \sf 2x \\\\  \sf \: 0& \sf \: 2 \end{array} \right]  + \left[ \begin{array}{c c } \sf  3& \sf 9 \\\\ \sf \: 3y& \sf \: 6 \end{array} \right]  = \left[ \begin{array}{c c } \sf  z& \sf  - 7\\\\ \sf \: 15& \sf \: 8 \end{array} \right]  \\  \\  \\ {\huge{⇾}} \left[ \begin{array}{c c } \sf  9& \sf 2x + 9 \\\\ \sf \: 3y& \sf \: 8 \end{array} \right]  = \left[ \begin{array}{c c } \sf  z& \sf  - 7 \\\\ \sf \: 15& \sf \: 8 \end{array} \right]  \\  \\  \\ \boxed{ \green{ \therefore \sf z = 9 }}\\  \\  \sf  {\huge{⇾}}2x + 9 =  - 7 \\  \sf {\huge{⇾}}2x =  - 7 - 9 \\  \sf {\huge{⇾}}2x =  - 16 \\  \sf {\huge{⇾}}x =   \frac{ -  \cancel{16} {}^{8} }{ \cancel{2}}  \\  \\  \boxed{ \green{ \therefore \sf \:x =  - 8 }}\\  \\  \sf {\huge{⇾}}3y = 15 \\  \sf {\huge{⇾}}y =  \frac{ \cancel{15} {}^{5} }{ \cancel{3}}  \\  \\  \boxed{ \green{ \sf \therefore \: y = 5}}

------------------------

 \sf \:8. \:  Given  \: A =  \left[ \begin{array}{c c } \sf  1& \sf 1 \\\\ \sf \:  - 2& \sf \: 0 \end{array} \right] \: and \: B = \left[ \begin{array}{c c } \sf  2& \sf -  1 \\\\ \sf \:  1& \sf \: 1 \end{array} \right]

i) X + 2A = B

 \sf \: Let  \:  \:  \: X = \left[ \begin{array}{c c } \sf  a& \sf b \\\\ \sf \:  c& \sf \: d \end{array} \right]

 { \huge{ ⇾}} \: \left[ \begin{array}{c c } \sf  a& \sf b\\\\ \sf \:  c& \sf \: d \end{array} \right] + 2 \left[ \begin{array}{c c } \sf  1& \sf 1 \\\\ \sf \:  - 2& \sf \: 0 \end{array} \right] = \left[ \begin{array}{c c } \sf  2& \sf  - 1 \\\\ \sf \:  1& \sf \: 1 \end{array} \right] \\  \\  \\ { \huge{ ⇾}} \left[ \begin{array}{c c } \sf  a& \sf b\\\\ \sf \:  c& \sf \: d \end{array} \right] + \left[ \begin{array}{c c } \sf  2& \sf 2\\\\ \sf \:   - 4& \sf \: 0 \end{array} \right] = \left[ \begin{array}{c c } \sf  2& \sf  - 1 \\\\ \sf \:  1& \sf \: 1 \end{array} \right] \\  \\  \\ { \huge{ ⇾}} \: \left[ \begin{array}{c c } \sf  a& \sf b\\\\ \sf \:  c& \sf \: d \end{array} \right] = \left[ \begin{array}{c c } \sf  2& \sf  - 1 \\\\ \sf \:  1& \sf \: 1 \end{array} \right] - \left[ \begin{array}{c c } \sf  2& \sf 2\\\\ \sf \:   - 4& \sf \: 0 \end{array} \right]  \\  \\  \\ { \huge{ ⇾}} \: \left[ \begin{array}{c c } \sf  a& \sf b\\\\ \sf \:  c& \sf \: d \end{array} \right] = \left[ \begin{array}{c c } \sf  0& \sf  - 3\\\\ \sf \:  5& \sf \: 1 \end{array} \right]  \\  \\  \\   \green{\sf \therefore \: X= \left[ \begin{array}{c c } \sf  0& \sf  - 3\\\\ \sf \:  5& \sf \: 1 \end{array} \right]}

-------------------------

Like this, we'll have to solve 8 ii) and iii)..

-------------------------

@MissSolitary ✌️

-------------------------

Similar questions