Math, asked by Anonymous, 3 months ago


please \: find \: the \: derivative \: of \: the \: above \: picture

Attachments:

Answers

Answered by kauranmolpreet395
5

Answer:

ùr ãñswer høpe it helps you ✌️✌️

Attachments:
Answered by shadowsabers03
22

Solution 1:-

Given,

\longrightarrow y=\dfrac{e^{2x}+e^{-2x}}{e^{2x}-e^{-2x}}

Dividing numerator and denominator by e^{2x},

\longrightarrow y=\dfrac{1+e^{-4x}}{1-e^{-4x}}\quad\quad\dots(1)

Substitute,

\longrightarrow \tan\theta=e^{-4x}

\longrightarrow \theta=\tan^{-1}\left(e^{-4x}\right)

\longrightarrow\dfrac{d\theta}{dx}=\dfrac{-4e^{-4x}}{1+(e^{-4x})^2}

\longrightarrow\dfrac{d\theta}{dx}=\dfrac{-4e^{-4x}}{1+e^{-8x}}

Then (1) becomes,

\longrightarrow y=\dfrac{1+\tan\theta}{1-\tan\theta}

\longrightarrow y=\tan\left(\theta+\dfrac{\pi}{4}\right)\quad\quad\dots(2)

From (1) and (2),

\longrightarrow\tan\left(\theta+\dfrac{\pi}{4}\right)=\dfrac{1+e^{-4x}}{1-e^{-4x}}\quad\quad\dots(3)

Then the derivative of y is,

\longrightarrow\dfrac{dy}{dx}=\dfrac{d}{dx}\left(\tan\left(\theta+\dfrac{\pi}{4}\right)\right)

\longrightarrow\dfrac{dy}{dx}=\dfrac{d}{d\theta}\left(\tan\left(\theta+\dfrac{\pi}{4}\right)\right)\cdot\dfrac{d\theta}{dx}

\longrightarrow\dfrac{dy}{dx}=\sec^2\left(\theta+\dfrac{\pi}{4}\right)\cdot\dfrac{-4e^{-4x}}{1+e^{-8x}}

\longrightarrow\dfrac{dy}{dx}=\left(1+\tan^2\left(\theta+\dfrac{\pi}{4}\right)\right)\cdot\dfrac{-4e^{-4x}}{1+e^{-8x}}

From (3),

\longrightarrow\dfrac{dy}{dx}=\left(1+\left(\dfrac{1+e^{-4x}}{1-e^{-4x}}\right)^2\right)\cdot\dfrac{-4e^{-4x}}{1+e^{-8x}}

\longrightarrow\dfrac{dy}{dx}=\dfrac{(1-e^{-4x})^2+(1+e^{-4x})^2}{(1-e^{-4x})^2}\cdot\dfrac{-4e^{-4x}}{1+e^{-8x}}

\longrightarrow\dfrac{dy}{dx}=\dfrac{2(1+e^{-8x})}{(1-e^{-4x})^2}\cdot\dfrac{-4e^{-4x}}{1+e^{-8x}}\quad\left[\because(a-b)^2+(a+b)^2=2(a^2+b^2)\right]

\longrightarrow\dfrac{dy}{dx}=-\dfrac{8e^{-4x}}{(1-e^{-4x})^2}

Multiplying numerator and denominator by e^{4x},

\longrightarrow\dfrac{dy}{dx}=-\dfrac{8e^{-4x}\cdot e^{4x}}{(1-e^{-4x})^2\cdot e^{4x}}

\longrightarrow\dfrac{dy}{dx}=-\dfrac{8}{\left((1-e^{-4x})\cdot e^{2x}\right)^2}

\longrightarrow\underline{\underline{\dfrac{dy}{dx}=-\dfrac{8}{\left(e^{2x}-e^{-2x}\right)^2}}}}}

Solution 2:-

Given,

\longrightarrow y=\dfrac{e^{2x}+e^{-2x}}{e^{2x}-e^{-2x}}\quad\quad\dots(4)

Since \coth x=\dfrac{e^x+e^{-x}}{e^x-e^{-x}},

\longrightarrow y=\coth(2x)\quad\quad\dots(5)

From (4) and (5),

\longrightarrow\dfrac{e^{2x}+e^{-2x}}{e^{2x}-e^{-2x}}=\coth(2x)\quad\quad\dots(6)

Then the derivative of y is,

\longrightarrow\dfrac{dy}{dx}=\dfrac{d}{dx}[\coth(2x)]

\longrightarrow\dfrac{dy}{dx}=\dfrac{d}{d(2x)}[\coth(2x)]\cdot\dfrac{d(2x)}{dx}

\longrightarrow\dfrac{dy}{dx}=\left(1-\coth^2(2x)\right)\cdot2

\longrightarrow\dfrac{dy}{dx}=2\left(1-\coth(2x)\right)\left(1+\coth(2x)\right)

From (6),

\longrightarrow\dfrac{dy}{dx}=2\left(1-\dfrac{e^{2x}+e^{-2x}}{e^{2x}-e^{-2x}}\right)\left(1+\dfrac{e^{2x}+e^{-2x}}{e^{2x}-e^{-2x}}\right)

\longrightarrow\dfrac{dy}{dx}=2\cdot\dfrac{-2e^{-2x}}{e^{2x}-e^{-2x}}\cdot\dfrac{2e^{2x}}{e^{2x}-e^{-2x}}

\longrightarrow\underline{\underline{\dfrac{dy}{dx}=-\dfrac{8}{\left(e^{2x}-e^{-2x}\right)^2}}}


TheValkyrie: Awesome!
Similar questions