Physics, asked by Anonymous, 3 months ago


please \: give \: derivative \: of \: picture \: above

Attachments:

Answers

Answered by TheValkyrie
9

Answer:

\tt \dfrac{dy}{dx}  =\dfrac{-2a^2x}{(a^2-x^2)^{1/2}\times (a^2+x^2)^{3/2}}

Explanation:

Given:

\tt y=\sqrt{\dfrac{a^2-x^2}{a^2+x^2} }

To Find:

dy/dx

Solution:

Here let,

\tt t=\dfrac{a^2-x^2}{a^2+x^2}

Now differentiate on both sides with respect to x,

\tt \dfrac{dt}{dx} =\dfrac{d}{dx}\bigg( \dfrac{a^2-x^2}{a^2+x^2}\bigg)

By quotient rule we know that,

\tt \bigg(\dfrac{u}{v}\bigg)'=\dfrac{u'v-v'u}{v^2}

Therefore,

\tt \dfrac{dt}{dx} =\dfrac{(a^2+x^2)(-2x)-(a^2-x^2)(2x)}{(a^2+x^2)^2}

\tt \implies \dfrac{-2a^2x-2x^3-(2a^2x-2x^3)}{(a^2+x^2)^2}

\tt \implies \dfrac{-2a^2x-2x^3-2a^2x+2x^3}{(a^2+x^2)^2}

\tt \implies \dfrac{-4a^2x}{(a^2+x^2)^2}

Now if,

\tt t=\dfrac{a^2-x^2}{a^2+x^2},

then y = √t

Differentiate on both sides with respect to t,

\tt \dfrac{dy}{dt} =\dfrac{1}{2\sqrt{t} }

Now,

\tt \dfrac{dy}{dx} =\dfrac{dy}{dt} .\dfrac{dt}{dx}

Substitute the values,

\tt \dfrac{dy}{dx} =\dfrac{1}{2\sqrt{t} } \times \dfrac{-4a^2x}{(a^2+x^2)^2}

\tt \implies \dfrac{-2a^2x}{\sqrt{t}\times (a^2+x^2)^2 }

\tt \implies \dfrac{-2a^2x}{\sqrt{\dfrac{a^2-x^2}{a^2+x^2} }\times (a^2+x^2)^2 }

\tt \implies \dfrac{-2a^2x\sqrt{a^2+x^2} }{\sqrt{a^2-x^2} \times (a^2+x^2)^2}

\tt \implies \dfrac{-2a^2x(a^2+x^2)^{1/2}}{(a^2-x^2)^{1/2}\times (a^2+x^2)^2}

\tt \implies \dfrac{-2a^2x}{(a^2-x^2)^{1/2}\times (a^2+x^2)^{3/2}}

Similar questions