Science, asked by thapaavinitika6765, 7 months ago

prove\:\csc \left(2x\right)=\frac{\sec \left(x\right)}{2\sin \left(x\right)}

Answers

Answered by raghuramansbi
6

Answer:

\huge{\underline{\mathtt{\red{❥A}\pink{N}\green{S}\blue{W}\purple{E}\orange{R}}}}

please wait mate

(sinx+cosecx) 2 +(cosx+secx) 2

=sin 2 x+cosec 2 x+2sinx×cosecx+cos 2

x+sec 2x+2cosxsecx

=sin 2 x+cos 2 x+cosec 2 x+sec 2

x+2sinx× sinx1

+2cosx× cosx1

=1+1+cot 2 x+1+tan 2 x+4

=7+tan 2 x+cot 2 x

LHS = RHS

Answered by Anonymous
1

\mathrm{Prove\:}\csc \left(2x\right)=\frac{\sec \left(x\right)}{2\sin \left(x\right)}:\quad \mathrm{True}

\mathrm{Manipulating\:left\:side}

\csc \left(2x\right)

\mathrm{Express\:with\:sin,\:cos}

\mathrm{Using\:the\:Basic\:Trigonometric\:identity}:\quad \csc \left(x\right)=\frac{1}{\sin \left(x\right)}

\csc \left(2x\right)=\frac{1}{\sin \left(2x\right)}

=\frac{1}{\sin \left(2x\right)}

\mathrm{Use\:the\:following\:identity}:\quad \sin \left(2x\right)=2\cos \left(x\right)\sin \left(x\right)

=\frac{1}{2\cos \left(x\right)\sin \left(x\right)}

\mathrm{Use\:the\:following\:identity:}\:\cos \left(x\right)=\frac{1}{\sec \left(x\right)}

=\frac{1}{2\cdot \frac{1}{\sec \left(x\right)}\sin \left(x\right)}

\mathrm{Simplify}\:\frac{1}{2\cdot \frac{1}{\sec \left(x\right)}\sin \left(x\right)}

=\frac{\sec \left(x\right)}{2\sin \left(x\right)}

\mathrm{We\:showed\:that\:the\:two\:sides\:could\:take\:the\:same\:form}

\Rightarrow \mathrm{True}

Similar questions