Physics, asked by ddsdddsdvvv, 9 months ago

prove\:\tan ^2\left(x\right)-\sin ^2\left(x\right)=\tan ^2\left(x\right)\sin ^2\left(x\right)

Answers

Answered by Anonymous
2

\bf{GIVEN\:\::}

\bigstar\bf{Prove\:}:\bf{\tan ^2\left(x\right)-\sin ^2\left(x\right)=\tan ^2\left(x\right)\sin ^2\left(x\right)}

\bf{ANSWER\:\::}

\bf{Manipulating\:\:right\:\:side}

\tan ^2\left(x\right)\sin ^2\left(x\right)

\mathrm{Use\:the\:following\:identity}:\quad \sin ^2\left(x\right)=1-\cos ^2\left(x\right)

=\left(1-\cos ^2\left(x\right)\right)\tan ^2\left(x\right)

\mathrm{Expand}\:\left(1-\cos ^2\left(x\right)\right)\tan ^2\left(x\right)

\longrightarrow\mathrm{Apply\:the\:distributive\:law}:\quad \:a\left(b-c\right)=ab-ac

a=\tan ^2\left(x\right),\:b=1,\:c=\cos ^2\left(x\right)

=\tan ^2\left(x\right)\cdot \:1-\tan ^2\left(x\right)\cos ^2\left(x\right)

=1\cdot \tan ^2\left(x\right)-\tan ^2\left(x\right)\cos ^2\left(x\right)

=\tan ^2\left(x\right)-\cos ^2\left(x\right)\tan ^2\left(x\right)

-\cos ^2\left(x\right)\tan ^2\left(x\right)=-\sin ^2\left(x\right)

\mathrm{Using\:the\:Basic\:Trigonometric\:identity}:\quad \tan \left(x\right)=\frac{\sin \left(x\right)}{\cos \left(x\right)}

\tan \left(x\right)=\frac{\sin \left(x\right)}{\cos \left(x\right)}

=-\cos ^2\left(x\right)\left(\frac{\sin \left(x\right)}{\cos \left(x\right)}\right)^2

=-\left(\frac{\sin \left(x\right)}{\cos \left(x\right)}\right)^2\cos ^2\left(x\right)

\mathrm{Simplify}\:-\left(\frac{\sin \left(x\right)}{\cos \left(x\right)}\right)^2\cos ^2\left(x\right):\quad -\sin ^2\left(x\right)

\bigstar\bf{Result:\tan ^2\left(x\right)-\sin ^2\left(x\right)}

\longrightarrow\bf{R.H.S\:\:=\:\:L.H.S}

We\:showed\:that\:the\:two\:sides\:could\:take\:the\:same\:form

\bigstar\bf{Henced\:\: proved\:\:that} :\bf{\tan ^2\left(x\right)-\sin ^2\left(x\right)=\tan ^2\left(x\right)\sin ^2\left(x\right)}

Similar questions