Math, asked by smile6168, 1 month ago


prove \: that \:  \:  \:  \:  \:  \:  \:  \\  \: 1 -  \cos( \alpha)  \div 1 +  \cos( \alpha )  = ( \cot \alpha  -  \csc \alpha ) {}^{2}

Answers

Answered by richapariya121pe22ey
1

Answer:

Step-by-step explanation:

\frac{1- cos\alpha }{1+cos\alpha}\\=\frac{1-cos\alpha}{1+cos\alpha}\times\frac{1-cos\alpha}{1-cos\alpha}\\=\frac{(1-cos\alpha)^2}{(1+cos\alpha)(1-cos\alpha)}\\=\frac{1-2cos\alpha+cos^2\alpha}{1-cos^2\alpha}\\=\frac{1-2cos\alpha+cos^2\alpha}{sin^2\alpha}\\=\frac{1}{sin^2\alpha}-\frac{2cos\alpha}{sin^2\alpha}+\frac{cos^2\alpha}{sin^2\alpha}\\=\frac{1}{sin^2\alpha}-\frac{2cos\alpha}{sin\alpha \times sin\alpha}+\frac{cos^2\alpha}{sin^2\alpha}\\\\

=cosec^2\alpha -2 \times cot\alpha \times cosec\alpha + cot^2\alpha\\= (cot\alpha-cosec\alpha)^2

Similar questions