Math, asked by shardagraphics77, 3 months ago


prove \: that \:   3 + 2 \ \sqrt 5 \: is \: irrational \: number

Answers

Answered by beststudent1
1

Answer:

Answer:−

{\underline{\boxed{\sf{\purple{\mathtt{ Question :-}}}}}}

Question:−

\begin{gathered}Prove \: that \: \\ \\ 3+2√5 \: is \: irrational \: number.\end{gathered}

Provethat

3+2√5isirrationalnumber.

\small\underline\mathcal\pink{Requried \: Answer :-}

RequriedAnswer:−

Let 3+2√5 be rational.

3+2√2 = p/q where q≠ 0 & p and q are integers.

3 + \sqrt{5} = \frac{a}{b} \: \: \: \: \: \:3+

5

=

b

a

a and b are coprime integers

\begin{gathered}2 \sqrt{5} = \frac{a}{b} - 3 \\ 2 \sqrt{5} \: \frac{a - 3}{b} \\ \sqrt{5} = \frac{1}{2} ( \frac{a}{b} - 3)\end{gathered}

2

5

=

b

a

−3

2

5

b

a−3

5

=

2

1

(

b

a

−3)

\begin{gathered}Since \: a \: and \: b \: are \: integers \: \frac{1}{2} ( \frac{a}{b} - 3) \: \\ will \: also \: be \: rational. \\ therefore \: \sqrt{5} \: is \: rational \end{gathered}

Sinceaandbareintegers

2

1

(

b

a

−3)

willalsoberational.

therefore

5

isrational

This contradicts that the fact √5 is irrational.

Hence our assumption that 3+2√5 is irrational number is false

Therefore 3+2√5 is irrational number

Similar questions