Answers
Answered by
29
Given : (a + b)^3 + (b +c)^3 + (c + a)^3 - 3(a + b)(b + c)(c + a).
= > a^3 + b^3 + 3ab(a + b) + b^3 + c^3 + 3bc(b + c) + c^3 + a^3 + 3ac(a + c) - 3(a + b)(b + c)(c + a)
= > a^3 + b^3 + 3a^2b + 3ab^2 + b^3 + c^3 + 3b^2c + 3bc^2 + c^3 + a^3 + 3a^2c + 3ac^2 - 3(2abc + a^2b + ac^2 + a^2c + ab^2 + b^2c + bc^2)
= > 2a^3 + 2b^3 + 2c^3 + 3a^2b + 3ab^2 + 3b^2c + 3bc^2 + 3a^2c + 3ac^2 - 3(2abc + a^2b + ac^2 + a^2c + ab^2 + b^2c + bc^2)
= > 2(a^3 + b^3 + c^3) + 3a^2b + 3ab^2 + 3b^2c + 3bc^2 + 3a^2c + 3ac^2 - 6abc - 3a^2b - 3ac^2 - 3a^2c - 3ab^2 - 3b^2c - 3bc^2
= > 2(a^3 + b^3 + c^3) - 6abc
= > 2(a^3 + b^3 + c^3 - 3abc).
Hope this helps!
Noah11:
thanks sir!
Answered by
3
hope it may help you dear
Attachments:
Similar questions