please its tooo urgent
Answer me faster
Answers
Step-by-step explanation:
Given :-
(Cosec θ - Cot θ)²
To find :-
Prove that
(Cosec θ - Cot θ)²= ( 1-Cos θ)/(1+Cos θ)
Solution :-
On taking LHS
(Cosec θ - Cot θ)²
=> [ (1/Sin θ) - (Cos θ/ Sin θ) ] ²
LCM = Sin θ
=>[ (1 - Cos θ) / Sin θ ]²-------------(1)
On taking RHS
=> ( 1-Cos θ)/(1+Cos θ)
On multiplying both numerator and denominator with (1-Cos θ) then
=> [( 1-Cos θ)(1-Cos θ)/(1+Cos θ)(1-Cos θ)]
=> (1-Cos θ)²/(1²-Cos² θ)
=> (1-Cos θ)²/(1-Cos² θ)
=> (1-Cos θ)²/Sin² θ
Since Sin² A + Cos² A = 1
=> [(1- Cos θ)/ Sin θ]² -------------(2)
From (1)&(2)
LHS = RHS
Therefore,
(Cosec θ - Cot θ)²= ( 1-Cos θ)/(1+Cos θ)
Hence, Proved.
Used formulae:-
→ Sin² A + Cos² A = 1
→ Cosec A = 1/SinA
→ Cot A = Cos A / Sin A
→ (a/b)^m = a^m / b^m
Step-by-step explanation:
(cosecA-cotA)^2=1-cosA÷1+cosA
(1/sinA-cosA/sinA)^2
(1-cosA÷sinA)^2 (1-cosA)^2-sin^2A
(1-cosA)(1-cosA)÷1-cos^2A
(1-cosA)(1-cosA)÷(1-cosA)(1+cosA) (1-cosA)=(1+cosA) proved