Math, asked by saranshhhofficial19, 1 month ago


prove \: that \:  \frac{1 +  \sin( \alpha )  -  \cos( \alpha ) }{ \cos( \alpha )  - 1 +  \sin( \alpha ) }  -  \frac{1 -  \sin( \alpha ) +  \cos( \alpha )  }{ \cos( \alpha  )  + 1 +  \sin( \alpha )  }  = 2 \tan( \alpha )

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Consider,

\purple{\rm :\longmapsto\:\dfrac{1 + sin \alpha  - cos\alpha }{cos\alpha  - 1 + sin\alpha } }

can be rewritten as

\purple{\rm \:  =  \: \dfrac{\dfrac{1 + sin\alpha  - cos\alpha }{cos\alpha } }{\dfrac{cos\alpha  - 1 + sin\alpha }{cos\alpha } } }

\purple{\rm \:  =  \: \dfrac{\dfrac{1}{cos\alpha }  + \dfrac{sin\alpha }{cos\alpha }  - \dfrac{cos\alpha }{cos\alpha } }{\dfrac{cos\alpha }{cos\alpha }  - \dfrac{1}{cos\alpha }  + \dfrac{sin\alpha }{cos\alpha } } }

\purple{\rm \:  =  \: \dfrac{sec\alpha  + tan\alpha  - 1}{1 - sec\alpha  + tan\alpha } }

\purple{\rm \:  =  \: \dfrac{sec\alpha  + tan\alpha  - ( {sec}^{2} \alpha  -  {tan}^{2} \alpha )}{1 - sec\alpha  + tan\alpha } }

\purple{\rm \:  =  \: \dfrac{sec\alpha  + tan\alpha  - (sec\alpha  + tan\alpha)(sec\alpha  - tan\alpha )}{1 - sec\alpha  + tan\alpha } }

\purple{\rm \:  =  \: \dfrac{(sec\alpha  + tan\alpha)(1  - sec\alpha   +  tan\alpha )}{1 - sec\alpha  + tan\alpha } }

\purple{\rm \:  =  \: sec\alpha  + tan\alpha }

Thus,

\purple{\rm \implies\:\boxed{ \tt{ \: \dfrac{1 + sin \alpha  - cos\alpha }{cos\alpha  - 1 + sin\alpha }  = sec\alpha  + tan\alpha }}}

Now Consider :-

\red{\rm :\longmapsto\:\dfrac{1 - sin\alpha  + cos\alpha }{cos\alpha  + 1 + sin\alpha } }

can be rewritten as

\red{\rm \:  =  \: \dfrac{\dfrac{1  -  sin\alpha  +  cos\alpha }{cos\alpha } }{\dfrac{cos\alpha  + 1 + sin\alpha }{cos\alpha } } }

\red{\rm \:  =  \: \dfrac{\dfrac{1}{cos\alpha }  -  \dfrac{sin\alpha }{cos\alpha }  + \dfrac{cos\alpha }{cos\alpha } }{\dfrac{cos\alpha }{cos\alpha }  +  \dfrac{1}{cos\alpha }  + \dfrac{sin\alpha }{cos\alpha } } }

\red{\rm \:  =  \: \dfrac{sec\alpha -  tan\alpha  + 1}{1 + sec\alpha  + tan\alpha } }

\red{\rm \:  =  \: \dfrac{sec\alpha -  tan\alpha  + ( {sec}^{2}\alpha  -  {tan}^{2}\alpha )}{1 + sec\alpha  + tan\alpha } }

\red{\rm \:  =  \: \dfrac{sec\alpha -  tan\alpha  + (sec\alpha  + tan\alpha)(sec\alpha - tan\alpha )}{1 +  sec\alpha  + tan\alpha } }

\red{\rm \:  =  \: \dfrac{(sec\alpha -  tan\alpha)(1 + sec\alpha  +  tan\alpha )}{1 +  sec\alpha  + tan\alpha } }

 \red{\rm \:  =  \: sec\alpha  - tan\alpha }

Thus,

\red{\rm \implies\:\boxed{ \tt{ \: \dfrac{1 - sin\alpha  + cos\alpha }{cos\alpha  + 1 + sin\alpha }  = sec\alpha  - tan\alpha }}}

Now, Consider

\blue{\rm :\longmapsto\:\dfrac{1 + sin \alpha  - cos\alpha }{cos\alpha  - 1 + sin\alpha }  \:  -  \: \dfrac{1 - sin\alpha  + cos\alpha }{cos\alpha  + 1 + sin\alpha } }

On substituting the values of both, evaluated above, we get

 \blue{\rm \:  =  \: (sec\alpha  + tan\alpha ) - (sec\alpha  - tan\alpha )}

 \blue{\rm \:  =  \: sec\alpha  + tan\alpha  - sec\alpha +  tan\alpha }

 \blue{\rm \:  =  \: 2tan\alpha }

Hence,

\blue{\boxed{ \tt{ \: \dfrac{1 + sin \alpha  - cos\alpha }{cos\alpha  - 1 + sin\alpha }  \:  -  \: \dfrac{1 - sin\alpha  + cos\alpha }{cos\alpha  + 1 + sin\alpha } = 2tan\alpha}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Formula Used :-

\boxed{ \tt{ \:  \frac{1}{cosx} = secx}}

\boxed{ \tt{ \:  \frac{sinx}{cosx} = tanx}}

\boxed{ \tt{ \:  {sec}^{2}x -  {tan}^{2}x = 1 \: }}

Similar questions