Math, asked by anupdas19988, 9 months ago


 prove \: that \: \frac{2}{ \ \sqrt{2 \sqrt{2 + 2cos4x} } }   = secx

Answers

Answered by MrImpeccable
16

ANSWER:

To Prove:

\dfrac{2}{\sqrt{2+\sqrt{2+2\cos4x\:}}}=\sec x

Solution:

We need to prove that,

\implies\dfrac{2}{\sqrt{2+\sqrt{2+2\cos4x\:}}}=\sec x

Taking LHS,

\implies\dfrac{2}{\sqrt{2+\sqrt{2+2\cos4x\:}}}

\implies\dfrac{2}{\sqrt{2+\sqrt{2(1+\cos4x)\:}}}

We know that,

\hookrightarrow\cos2\theta=2\cos^2\theta-1

Similarly,

\hookrightarrow\cos4\theta=2\cos^22\theta-1

So,

\implies\dfrac{2}{\sqrt{2+\sqrt{2(1+\cos4x)\:}}}

\implies\dfrac{2}{\sqrt{2+\sqrt{2(1+(2\cos^22x-1))\:}}}

\implies\dfrac{2}{\sqrt{2+\sqrt{2(1\!\!\!/\:+2\cos^22x-1\!\!\!/\:)\:}}}

\implies\dfrac{2}{\sqrt{2+\sqrt{2(2\cos^22x)\:}}}

\implies\dfrac{2}{\sqrt{2+\sqrt{4\cos^22x\:}}}

So,

\implies\dfrac{2}{\sqrt{2+2\cos2x\:}}

\implies\dfrac{2}{\sqrt{2(1+\cos2x)\:}}

\implies\dfrac{2}{\sqrt{2(1+(2\cos^2x-1))\:}}

\implies\dfrac{2}{\sqrt{2(1\!\!\!/\:+2\cos^2x-1\!\!\!/\:)\:}}

So,

\implies\dfrac{2}{\sqrt{4\cos^2x\:}}

\implies\dfrac{2\!\!\!/\:}{2\!\!\!/\:\cos x}

\implies\dfrac{1}{\cos x}

So,

\implies\bf sec x = RHS

As, LHS = RHS

HENCE PROVED!!

Similar questions