Math, asked by Harshikarnavat6894, 1 year ago

[tex] prove that \left|\begin{array}{ccc} 1&1&1 \\a²&b²&c²\\a³&b³&c³\end{array}\right| = (a-b)(b-c)(c-a)(ab+bc+ca) [\tex]

Answers

Answered by hukam0685
0

Step-by-step explanation:

To prove

 \left|\begin{array}{ccc} 1&1&1 \\a^2&b^2&c^2\\a^3&b^3&c^3\end{array}\right| = (a-b)(b-c)(c-a)(ab+bc+ca)

C1 -> C1 - C2 \\  \\ C2 -> C2 - C3 \\  \\

 \left|\begin{array}{ccc} 1-1&1-1&1 \\a^2-b^2&b^2-c^2&c^2\\a^3-b^3&b^3-c^3&c^3\end{array}\right|

As we know that

 {a}^{2}  -  {b}^{2}  = (a + b)(a - b) \\  \\ {a}^{3}  -  {b}^{3} = (a - b)( {a}^{2}  + ab +  {b}^{2} ) \\  \\

 \left|\begin{array}{ccc} 0&0&1 \\(a-b)(a+b)&(b-c)(b+c)&c^2\\(a-b)(a^2+ab+b^2)&(b-c)(b^2+bc+c^2)&c^3\end{array}\right|

Take (a-b) from C1 and (b-c) from C2

 (a-b)(b-c)\left|\begin{array}{ccc} 0&0&1 \\(a+b)&(b+c)&c^2\\(a^2+ab+b^2)&(b^2+bc+c^2)&c^3\end{array}\right|

C1 -> C1-C2

 (a-b)(b-c)\left|\begin{array}{ccc} 0&0&1 \\a+b-b-c&(b+c)&c^2\\a^2+ab+b^2-b^2-bc-c^2&(b^2+bc+c^2)&c^3\end{array}\right|

 (a-b)(b-c)\left|\begin{array}{ccc} 0&0&1 \\a-c&(b+c)&c^2\\a^2-c^2+ab-bc&(b^2+bc+c^2)&c^3\end{array}\right|

 (a-b)(b-c)\left|\begin{array}{ccc} 0&0&1 \\a-c&(b+c)&c^2\\a^2-c^2+ab-bc&(b^2+bc+c^2)&c^3\end{array}\right|

 (a-b)(b-c)\left|\begin{array}{ccc} 0&0&1 \\a-c&(b+c)&c^2\\(a-c)(a+b+c)&(b^2+bc+c^2)&c^3\end{array}\right|

Take common (a-c) from C1

 (a-b)(b-c)(a-c)\left|\begin{array}{ccc} 0&0&1 \\1&(b+c)&c^2\\(a+b+c)&(b^2+bc+c^2)&c^3\end{array}\right|

Expand the determinant along R1

 {b}^{2}  + bc +  {c}^{2}  - (b + c)(a + b + c) \\  \\  {b}^{2}  + bc +  {c}^{2} - ab -  {b}^{2}  - bc - ac - bc -  {c}^{2} ) \\  \\  - (ab + bc + ac) \\  \\

So LHS becomes

  =  > - (a-b)(b-c)(a-c)( ab + bc + ac) \\  \\  =  > (a-b)(b-c)(c - a)( ab + bc + ac) \\  \\ =RHS\\\\

Hope it helps you.

Similar questions