Math, asked by Nahidur16, 1 year ago


prove \: that


 \sqrt{ \frac{1 + cos \: a}{1  - cos \: a } }  =  cosec \: a + cot \: a

Answers

Answered by Anonymous
78

\bold{\large{\underline{\underline{\sf{StEp\:by\:stEp\:explanation:}}}}}

LHS = \sf{ \sqrt{ \frac{1 + cos \: A}{1 - cos \: A} } }

Multiply numerator and denominator with ( 1 + cos A )

 \sf{ \sqrt{ \frac {( 1 + cos A ) ( 1 + cos A )}{( 1 - cos A ) ( 1 + cos A )} } }

 \sf {  =  \sqrt{ \frac{{1 + cos}^{2} }{ {1}^{2} +  {cos \: }^{2}A  } } }

[ since ( a + b ) ( a - b ) = a²2 - b² ]

 \sf{ \sqrt{ \frac{ {1 + cos \: A}^{2} }{ {sin}^{2}A } } }

 \:  \sf {  = \frac{( 1 + cos A )}{  sin A }}

 \sf{ \:  =  \frac{1}{sin \: A}  +  \frac{cos \: A}{sin \: A} }

 \sf{ = cosec A + cot A }

[HENCE PROVED]

Answered by ItzCuteChori
12

\huge{\boxed{\red{\boxed{\mathfrak{\pink{Solution}}}}}}

LHS =\sf{ \sqrt{ \frac{1 + cos \:A}{1 - cos \:A}}}

Multiply numerator and denominator with ( 1 + cos A )

\sf{\sqrt{\frac{( 1 + cos A ) ( 1 + cos A )}{( 1 - cos A ) ( 1 + cos A )}}}

\sf { = \sqrt{ \frac{{1 + cos}^{2} }{ {1}^{2} + {cos \:}^{2}A}}}

[ since ( a + b ) ( a - b ) = a²2 - b² ]

\sf{ = \frac{{1 + cos \:A}^{2}}{{sin}^{2}A}}

\sf{ = \frac{(1 + cos A)}{sin A}}

\sf{ \:= \frac{1}{sin \:A}+ \frac{cos \:A}{sin \:A}}

\sf{ = cosec A + cot A }

[HENCE PROVED]

Similar questions