Math, asked by sayantand200gmailcom, 4 months ago


prove that2 \sin   \frac{pi}{8}  =  \sqrt{2 -  \sqrt{2} }

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

2 \sin( \frac{\pi}{8} )  = 2 \sin(  \frac{1}{2}  \times \frac{\pi}{4} )  = 2 \times  \sqrt{ \frac{1 -  \cos( \frac{\pi}{4} ) }{2} }

 = 2 \sqrt{ \frac{ \sqrt{2} - 1 }{2 \sqrt{2} } }

 = 2 \sqrt{ \frac{2 -  \sqrt{2} }{4} }

 = 2 \times  \frac{ \sqrt{2  - \sqrt{2} } }{2}

 =  \sqrt{2 -  \sqrt{2} }

Similar questions