If a²sec²theta-b²tan²theta=c², then prove that sin²theta=c²-a/c²-b.
AnnikaDavis:
(+_+)
Answers
Answered by
6
a^2 sec^2 - b^2 tan^2 = c^2
a^2/cos^2 - b^2 sin^2/cos^2 = c^2
a^2 - b^2 sin^2 = c^2 cos^2
a^2 - b^2 sin^2 = C^2( 1 - sin^2)
a^2 - b^2 sin^2 = c^2 - c^2 sin^2
a^2 - c^2 =- c^2 sin^2 + b^2 sin^2
sin^2 = a^2 - c^2)/ b^2 - c^2
= c^2 - a^2)/ c^2 - b^2
a^2/cos^2 - b^2 sin^2/cos^2 = c^2
a^2 - b^2 sin^2 = c^2 cos^2
a^2 - b^2 sin^2 = C^2( 1 - sin^2)
a^2 - b^2 sin^2 = c^2 - c^2 sin^2
a^2 - c^2 =- c^2 sin^2 + b^2 sin^2
sin^2 = a^2 - c^2)/ b^2 - c^2
= c^2 - a^2)/ c^2 - b^2
Answered by
6
Hope this attachment will help you....
Attachments:
Similar questions