Math, asked by nandita58, 11 months ago


 proved \: \:  that \\  \:  \: \sqrt{6 +  \sqrt{6 +  \sqrt{6 + ....... \alpha } } }  = 3

Answers

Answered by kaushik05
8

hope this helps you☺️☺️☺️

Attachments:
Answered by anu24239
8

\huge\mathfrak\red{Answer}

 \\ let \\  \sqrt{6 +  \sqrt{6 +  \sqrt{6 +  \sqrt{6 + ... \alpha } } } }  = x \\  squaring \: on \: both \: side \\  \\6 +  \sqrt{6 +  \sqrt{6 +  \sqrt{6 + ... \alpha  } } }  =  {x}^{2}  \\  \\ we \: know \: that \\  \sqrt{6 +  \sqrt{6 +  \sqrt{6.... \alpha } } }  = x \\ so \\ 6 + x =  {x}^{2}  \\  \\  {x}^{2}  - x - 6 = 0 \\  {x}^{2}  - 3x + 2x - 6 = 0 \\ x(x - 3) + 2(x - 3) = 0 \\ (x - 3)(x + 2) = 0 \\ we \: get \: x =  - 2 \\ x = 3 \\  \\ so \:  \\  \sqrt{6 +  \sqrt{6 +  \sqrt{6.... \alpha } } }  =  - 2 \\ which \: is \: not \: possible \\  \\  \sqrt{6 +  \sqrt{6 +  \sqrt{6...... \alpha } } }  = 3

Similar questions