Math, asked by talpadadilip417, 1 day ago


 \purple{ \boxed{ \boxed{\red { \displaystyle \: \tt Prove \:  \:   That:\int_{0}^{\frac{\pi}{2}} \sin 2 x \log \tan x  \: d x=0}}}}
Answer with proper explanation.

Don't Dare for spam.

→ Expecting answer from :

★ Moderators
★ Brainly stars and teacher
★ Others best users ​​​​​

Answers

Answered by eshu001
1

Answer:

Hey mate here is your Answer

THANKYOUUU✨

Attachments:
Answered by XxitzZBrainlyStarxX
10

Question:-

Prove that:

\sf \large \int ^{ \frac{\pi}{2} } _{0} \: sin2x \: log(tan \:  x)dx = 0.

Given:-

Integration is

 \sf \large \int ^{ \frac{\pi}{2} } _{0} \: sin2x \: log(tan \:  x)dx.

To Prove:-

 \sf \large \int ^{ \frac{\pi}{2} } _{0} \: sin2x \: log(tan \:  x)dx = 0.

Solution:-

 \sf \large Let, I =  \int ^{ \frac{\pi}{2} } _{0} \: sin2x \: log(tan \: x)dx \:  \: ...(1)

 \sf \large =  \int^{ \frac{\pi}{2} } _{0} \: sin2( \frac{\pi}{2}  - x)log(tan( \frac{\pi}{2}  - x)dx

 \sf \large =  \int ^{ \frac{\pi}{2} } _{0} \: sin(\pi - 2x)log(tan( \frac{\pi}{2}  - x))dx

 \sf \large =  \int ^{ \frac{\pi}{2} } _{0} \: sin(\pi - 2x)log(cot \: x)dx

 \sf \large =  \int^{ \frac{\pi}{2} } _{0} \: sin2x \: log(cot \: x)dx \: ...(2)

Adding Equation (1) and (2), we get:

 \sf \large2I =  \int ^{ \frac{\pi}{2} } _{0} \: sin2x \: log(tan \: x)dx +  \int ^{ \frac{\pi}{2} } _{0} \: sin2x \: log(cot \: x)dx

 \sf \large =  \int ^{ \frac{\pi}{2} } _{0} \: sin2x \: [log(tan \: x)+ log(cot \: x)]dx

 \sf \large =  \int ^{ \frac{\pi}{2} } _{0} \: sin2x[log(tan \: x.cot \: x)]dx

 \sf \large =  \int ^{ \frac{\pi}{2} } _{0} \: sin2x(log1)dx

 \sf \large = 0

 \sf \large I = 0.

Answer:-

{ \boxed{ \sf \large  \green{Hence, Proved  \:  that \sf \large \int ^{ \frac{\pi}{2} } _{0} \: sin2x \: log(tan \:  x)dx = 0.}}}

Hope you have satisfied.

Similar questions