Math, asked by sajan6491, 5 days ago

 \purple{ \rm{If  \: y = (x - 1)(x - 2)(x - 3) \dots \dots(x - 2021)}} \\  \red {\rm{then \: find \:  \frac{dy}{dx} \bigg|_{x = 2021}}}

Answers

Answered by mathdude500
11

\large\underline{\sf{Solution-}}

Given function is

\rm \: y = (x - 1)(x - 2)(x - 3) \dots \dots(x - 2021) \\

On taking log on both sides, we get

\rm \: logy = log[(x - 1)(x - 2)(x - 3) \dots \dots(x - 2021)] \\

We know,

\boxed{ \rm{ \:log(xy) = logx + logy \: }} \\

So, using this result, we get

\rm \: logy = log(x - 1) + log(x - 2) +  \cdots + log(x - 2021) \\

On differentiating both sides w. r. t. x, we get

\rm \: \dfrac{d}{dx}logy = \dfrac{d}{dx}\bigg[log(x - 1) + log(x - 2) +  \cdots + log(x - 2021)\bigg] \\

We know,

\boxed{ \rm{ \:\dfrac{d}{dx}logx \:  =  \:  \frac{1}{x} \: }} \\

So, using this result, we get

\rm \: \dfrac{1}{y}\dfrac{dy}{dx} = \dfrac{1}{x - 1} +  \dfrac{1}{x - 2} + \cdots +  \dfrac{1}{x - 2021} \\

\rm \:\dfrac{dy}{dx} = \dfrac{y}{x - 1} +  \dfrac{y}{x - 2} + \cdots +  \dfrac{y}{x - 2021} \\

\rm \:\dfrac{dy}{dx} = \dfrac{(x - 1)(x - 2)\cdots(x - 2021)}{x - 1} +  \dfrac{(x - 1)(x - 2)\cdots(x - 2021)}{x - 2} + \cdots +  \dfrac{(x - 1)(x - 2)\cdots(x - 2021)}{x - 2021} \\

\rm \:\dfrac{dy}{dx} =(x - 2)(x - 3)\cdots(x - 2021) + (x - 1)(x - 3)\cdots(x - 2021) + \cdots + (x - 1)(x - 2)\cdots(x - 2020) \\

Now,

\rm \: \dfrac{dy}{dx} \bigg|_{x = 2021} \\

\rm \: =0 + 0 + \cdots + (2021 - 1)(2021 - 2)\cdots(2021 - 2020) \\

\rm \:  =  \: (2020)(2019)\cdots\cdots(1) \\

\rm \:  =  \: 2020! \\

Hence,

\color{green} \: \rm\implies \:\dfrac{dy}{dx} \bigg|_{x = 2021}  =  \: 2020! \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {x}^{n}\\ \\ \sf  {nx}^{n - 1}  & \sf  {e}^{x} \end{array}} \\ \end{gathered}

Similar questions