Math, asked by Anonymous, 6 hours ago

 \quad \leadsto \sf AP = a_{1} , a_{2} , . . . . . . , a_{n}

 \quad \leadsto \sf S_{n} = m

 \quad \leadsto \sf S_{m} = n

Fínd  \sf S_{m+n}

May be a good question -,- ​

Answers

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

Sₙ is the sum of n terms of AP.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

Given that,

\red{\rm :\longmapsto\:S_n = m}

\rm :\longmapsto\:\dfrac{n}{2}\bigg(2a + (n - 1)d\bigg) = m

\rm :\longmapsto\:2an + n(n - 1)d = 2m -  -  - (1)

Further, given that

\red{\rm :\longmapsto\:S_m = n}

\rm :\longmapsto\:\dfrac{m}{2}\bigg(2a + (m - 1)d\bigg) = n

\rm :\longmapsto\:2am + m(m - 1)d =2n  -  -  - (2)

On Subtracting equation (1) from (2), we get

\rm :\longmapsto\:2a(m - n) + d\bigg(m(m - 1) - n(n - 1)\bigg) = 2n - 2m

\rm :\longmapsto\:2a(m - n) + d\bigg( {m}^{2} - m  -  {n}^{2} + n\bigg) = 2n - 2m

\rm :\longmapsto\:2a(m - n) + d\bigg({m}^{2} -{n}^{2} + n - m\bigg) = 2n - 2m

\rm :\longmapsto\:2a(m - n) + d\bigg((m + n)(m - n) - (m - n)\bigg) = 2n - 2m

\rm :\longmapsto\:2a(m - n) + d(m - n)\bigg(m + n - 1\bigg) = 2n - 2m

\rm :\longmapsto\:(m - n)\bigg[2a+ d\bigg(m + n - 1\bigg)\bigg] =  - 2(m -n)

\rm :\longmapsto\:2a+ d\bigg(m + n - 1\bigg)=  - 2 -  -  -  - (3)

Now, Consider

\rm :\longmapsto\:S_{m + n}

\rm \:  =  \: \dfrac{m + n}{2}\bigg(2a + (m + n - 1)d\bigg)

\rm \:  =  \: \dfrac{m + n}{2}\bigg( - 2\bigg)

\rm \:  =  \:  - (m + n)

Hence,

\rm \implies\:\boxed{\tt{ \:S_{m + n} \:  =  \:  -  \: (m + n) \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

aₙ is the nᵗʰ term.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

Answered by diwanamrmznu
8

given★

  •  \quad \leadsto \sf AP = a_{1} , a_{2} , . . . . . . , a_{n}

  •  \quad \leadsto \sf S_{n} = m

  •  \quad \leadsto \sf S_{m} = n

find★

  •  \sf S_{m+n}

solution★

  • we know that sum of n th term formula

  •  s_{n} = \frac{n}{2} (2a + (n - 1)d)

  •  \quad \leadsto \sf S_{n} = m

  •  \frac{n}{2} (2a + (n - 1)d) = m \\  \\  \\ 2an + nd(n - 1)d = 2m -  -  - (1)

  •  \quad \leadsto \sf S_{m} = n

  • similarly

  •  \frac{m}{2} (2a +( m - 1)d = n

  • 2am + md(m - 1) = 2n  -  -  - (2)

  • now we subsitude (1)-(2)

  • 2an - 2am +nd(n - 1) -  md(m - 1) = 2n - 2m

  • 2a(n - m) + d(n(n - 1) - m(m - 1)) = 2(n - m)

  • (n - m)(2a ( -  m  - n  +  1)d) = 2(n - m) \\  \\   2a   - (- m - n + 1)d =  - 2  \\  \\ 2a + (m + n - 1)d =  - 2 -  -  - (3)

============================≠

  •  s_{n + m} =  \frac{n + m}{2}(2a + (m + n - 1)d) \\  \\  \\ eq \:  \: (3)  value \: put \\  \\  \\  =  \frac{m + n}{2}  ( - 2) \\  \\  \\  - (m + n)

=======================================

other formula

  •  s_{n} =  \frac{n}{2} (2a + l) \\
  • where l last term number

========================================

I hope it helps you

Similar questions