Math, asked by s21744riya02626, 2 days ago


questionssolve and factorise in detail ​

Attachments:

Answers

Answered by bhim76
1

Step-by-step explanation:

1)

prove that:

 \frac{ {a}^{ - 1} }{ {a}^{ - 1}  +  {b}^{ - 1} }  +  \frac{ {a}^{ - 1} }{ {a}^{ - 1}  +  {b}^{ - 1} }  =  \frac{2 {b}^{2} }{ {b}^{2} -  {a}^{2}  }

 \frac{ {a}^{ - 2} - (ab)^{ - 1}  +  {a}^{ - 2}   +  {(ab)}^{ - 1} }{ {a}^{ - 2}  -  {b}^{ - 2} }  =  \frac{2 {b}^{2} }{ {b}^{2}  -  {a}^{2} }

 \frac{ {a}^{ - 2}  +  {a}^{ - 2}  }{ {a}^{ - 2} -  {b}^{ - 2}  }  =  \frac{2 {b}^{2} }{ {b}^{2}  -  {a}^{2} }

 \frac{2 {a}^{ - 2} }{ {a}^{ - 2}  -  {b}^{ - 2} }  =  \frac{2 {b}^{2} }{ {b}^{2} -  {a}^{2}  }

cross-multiplying,

2 {a}^{ - 2} ( {b}^{2} -  {a}^{2}  ) = 2 {b}^{2} ( {a}^{ - 2}  -  {b}^{ - 2} )

2 {b}^{2}  {a}^{ - 2}  - 2 = 2 {b}^{2}  {a}^{ - 2}  - 2

hence, proved!

2)

prove that,

 \frac{ {2}^{30} +  {2}^{29}  +  {2}^{28}  }{ {2}^{31}  +  {2}^{30} -  {2}^{29}    }  =  \frac{7}{10}

 \frac{ {2}^{28 + 2} +  {2}^{28 + 1}  +  {2}^{28}  }{ {2}^{29  +  2}  +  {2}^{29  + 1} -  {2}^{29}    }  =  \frac{7}{10}

 \frac{ {2}^{28} \times  {2}^{2}  +  {2}^{28} \times  {2}^{1}   +  {2}^{28}  }{ {2}^{29} \times  {2}^{2}   +  {2}^{29}  \times  {2}^{1} -  {2}^{29}    }  =  \frac{7}{10}

 \frac{ {2}^{28}( {2}^{2} + 2 + 1 ) }{ {2}^{29} ( {2}^{2} + 2 + 1 )}  =  \frac{7}{10}

 \frac{4 + 2 + 1}{2( 4+ 2 - 1)}  =  \frac{7}{10}

 \frac{7}{2(5)}  =  \frac{7}{10}

hence, proved!

3)

Factorise:

a) \:  \: {x}^{2}  - 4x - 2 1 \\  =  {x}^{2}  - 7x + 3x - 21 \\  = x(x - 7) + 3(x - 7) \\  = (x - 7)(x + 3)

b) \:  \: 9x  ^ { 2  }  -22x+8 \\  = 9 {x}^{2}  - 18x - 4x + 8 \\  = 9x(x - 2) - 4(x - 2) \\  = (x - 2)(9x - 4)

c) \:  \:  2x  ^ { 2  }  -7x-39 \\  = 2 {x}^{2}  + 6x - 13x - 39 \\  = 2x(x + 3) - 13(x + 3) \\  = (x + 3)(2x - 13)

d) \:  \: 35y  ^ { 2  }  +13y-12 \\ =  35 {y}^{2}  - 15y + 28y - 12 \\  = 5y(7y - 3) + 4(7y - 3) \\  = (7y - 3)(5y + 4)

4)

Find the value of a and b if:

 \frac{3 +  \sqrt{2} }{3 -  \sqrt{2} } = a + b \sqrt{2}   \\  \frac{3 +  \sqrt{2} }{3 -  \sqrt{2} }  \times  \frac{3 +  \sqrt{2} }{3 +  \sqrt{2} }  = a + b \sqrt{2}  \\  \frac{ {3}^{2} + 2 \times 3 \times  \sqrt{2}  + ( { \sqrt{2} }^{2} ) }{ {3}^{2} -  { (\sqrt{2}) }^{2}  }  = a + b \sqrt{2}  \\  \frac{9 + 6 \sqrt{2}  + 2}{9 - 2}  = a + b \sqrt{2}  \\  \frac{11 + 6 \sqrt{2} }{7}  = a + b \sqrt{2}  \\  \frac{11}{7}  +  \frac{6}{7} \sqrt{2}   = a + b \sqrt{2}  \\ \\  hence, \: a =  \frac{11}{7} , \: b =  \frac{6}{7}

Similar questions