Math, asked by princeyadav5535dy, 7 months ago


rationalise \: the \: denominator  \\    \frac{1}{ \sqrt{5 +  \sqrt{2} } }

Answers

Answered by Anonymous
2

\sf\huge\orange{\underbrace{ Question : }}

Rationalise the denominator :

\tt  \cfrac{1}{\sqrt{5} + \sqrt{2}}

\sf\huge\red{\underbrace{ Solution : }}

\sf \implies \cfrac{1}{\sqrt{5} + \sqrt{2}}

  • Multiply both numerator and denominator with √5 - √2.

\sf \implies \cfrac{1}{\sqrt{5} + \sqrt{2}} \times \cfrac{\sqrt{5}-\sqrt{2}}{\sqrt{5}-\sqrt{2}}

\sf \implies \cfrac{\sqrt{5}-\sqrt{2}}{(\sqrt{5}+\sqrt{2})(\sqrt{5}-\sqrt{2})}

  • (a + b)(a - b) = a² - b²

\sf \implies \cfrac{\sqrt{5}-\sqrt{2}}{(\sqrt{5})^{2} - (\sqrt{2})^{2}}

\sf \implies \cfrac{\sqrt{5}-\sqrt{2}}{5-2}

\sf \implies \cfrac{\sqrt{5}-\sqrt{2}}{3}

\underline{\boxed{\rm{\purple{\therefore \cfrac{1}{\sqrt{5} + \sqrt{2}} = \cfrac{\sqrt{5}-\sqrt{2}}{3} .}}}}\:\orange{\bigstar}

Answered by Anonymous
57

ANSWER

\large\underline\bold{GIVEN,}

\rm\dashrightarrow \dfrac{1}{ \sqrt{5 + \sqrt{2} } }

\large\underline\bold{TO\:FIND,}

\sf\dashrightarrow  TO\:RATIONALISE\:THE\: DENOMINATOR

IDENTITY IN USE,

\large{\boxed{\bf{ (a + b)(a - b) = a^2 - b^2}}}

\large\underline\bold{SOLUTION,}

\sf\therefore \dfrac{1}{ \sqrt{5 + \sqrt{2} } }

\sf\dashrightarrow multiplying\:numerator\:and\:denomintaor\:by, \: \sqrt{5}- \sqrt{2}

WE GET,

\sf \implies \dfrac{1}{\sqrt{5} + \sqrt{2}} \times \dfrac{\sqrt{5}-\sqrt{2}}{\sqrt{5}-\sqrt{2}}

\sf \implies \dfrac{\sqrt{5}-\sqrt{2}}{(\sqrt{5}+\sqrt{2})(\sqrt{5}-\sqrt{2})}

\sf \implies \dfrac{\sqrt{5}-\sqrt{2}}{(\sqrt{5})^{2} - (\sqrt{2})^{2}}

\sf \implies \dfrac{\sqrt{5}-\sqrt{2}}{(\sqrt{25}) - (\sqrt{4})}

\sf \implies \dfrac{\sqrt{5}-\sqrt{2}}{5-2}

\sf \implies \dfrac{\sqrt{5}-\sqrt{2}}{3}

\large{\boxed{\bf{\star\:\: \dfrac{1}{\sqrt{5} + \sqrt{2}} = \dfrac{\sqrt{5}-\sqrt{2}}{3} \:\: \star}}}

HENCE THE RATIONALIST DENOMINATOR IS \sf \dfrac{\sqrt{5}-\sqrt{2}}{3}

______________________

Similar questions