Find the distance between origin and
(sinA+cosA , sinA-cosA ).
Answers
√2 is The distance between the points ( cosA, sinA ) and ( -sinA, cosA )
Step-by-step explanation:
we need to find The distance between the points ( cosA, sinA ) and ( -sinA, cosA )
Distance between Two Points A (x₁ , y₁) & B (x₂ , y₂)
is given by √(x₂ - x₁)² + (y₂ - y₁)²
Here x₁ = CosA y₁ = SinA
x₂ = -SinA y₂ = CosA
Distance = √(-SinA - CosA)² + (CosA - SinA)²
=√Sin²A + Cos²A + 2SinACosA + Cos²A + Sin²A - 2SinACosA
as we know that Sin²A + Cos²A = 1
= √1 + 2SinACosA +1 - 2SinACosA
= √2
The distance between the points ( cosA, sinA ) and ( -sinA, cosA ) is √2
Learn more:
23. Find the distance between the points:(3,-2) and (15,3) - Brainly.in
To Find :
Distance between origin and (SinA + CosA , SinA - CosA)
______________________________
Solution :
We know that coordinates of the origin are (0,0). Take A(0,0)
And the coordinates of other points are (SinA + CosA , SinA - CosA),Take B(SinA + CosA, SinA - CosA)
Use distance formula :
Where,
x1 = 0
y1 = 0
x2 = SinA + CosA
y2 = SinA - CosA
____________[Put Values]
⇒|AB| = √(SinA + CosA- 0)² + (SinA - CosA - 0)²
⇒|AB| = √(SinA + CosA)² + (SinA - CosA)²
⇒|AB| = √(Sin²A + Cos²A + 2SinACosA + Sin²A + Cos²A - 2SinACosA)
⇒|AB| = √(1 + 2SinACosA) + (1 - 2SinACosA)
⇒|AB| = √2 + 2SinACosA - 2SinACosA
⇒|AB| = √2
______________________________
Important Formulas :
- Sin²A + Cos²A = 1
- Cosec²A - Cot²A = 1
- Sec²A - Tan²A = 1
- SinA/CosA = TanA
- CosA/SinA = CotA
#answerwithquality
#BAL