Math, asked by mysticd, 11 months ago

\red {11}
If \:log_{10} 250, \:log_{10} 500\\and \: x \:are \:in \:A.P\:then \:find \:x

Answers

Answered by Shubhendu8898
64

Answer: 3

Step-by-step explanation:

Given that,

\log_{10}250\,,\log_{10}500\,\text{and x are in AP}\,

Since we know that if a , b , c are in AP

2b = a + c

Here,

a=\log_{10}250\\\;\\b=\log_{10}500\\\;\\c=x

Applying the above condition for being these numbers in AP,

2\log_{10}500=\log_{10}250+x\\\;\\2\log_{10}500-\log_{10}250=x\\\;\\x=2\log_{10}500-\log_{10}250\\\;\\x=\log_{10}500^2-\log_{10}250\;\;\;\;\;[\because\,n\log{x}=\log{x^n}]\\\;\\x=\log_{10}\frac{500^2}{250}\;\;\;\;\;[\because\log{m}-\log{n}=\log\frac{m}{n}\\\;\\x=\log_{10}\frac{500\times500}{250}\\\;\\x=\log_{10}{1000}\\\;\\x=\log_{10}10^3\\\;\\x=3\log_{10}10\;\;\;\;[\because \log_aa=1]\\\;\\x=3\times1\\\;\\x=3


Anonymous: Beautiful answer bro
Answered by Anonymous
60

\huge{\underline{\underline{\red{\mathfrak{Answer :}}}}}

{\sf{{\red{log_{10}250}} \: , \:  {\blue{log_{10}500}} \: and \: {\green{x}} \: are \: in \: A.P}}

As we know if they are in A.P Then,

2b = a + c........(1)

So here ,

 \sf{a \:  =  \:  log_{10}(250) } \\  \sf{b \:  =  \:  log_{10}(500)} \\  \sf{c \:  =  \: x}

We have to find value of x

Substitute these values in (1)

 \rightarrow {\sf{2log_{10}500 \: = \: log_{10}250 \: + \: x}}

 \rightarrow {\sf{2log_{10}500 \: - \: log_{10}250 \: = \: x}}

 \rightarrow {\sf{x \: = \: log_{10}500^2 \: - \: log_{10}250}}

 \rightarrow {\sf{x \: = \: log_{10}{\frac{500^2}{250}}}}

 \rightarrow {\sf{x \: = \: log_{10} \frac{250000}{250}}}

 \rightarrow {\sf{x \: = \: log_{10} 1000}}

 \rightarrow {\sf{x \: = \: log_{10} 10^3}}

\rightarrow {\sf{x \: = \: 3log_{10}{10}}}

\rightarrow {\sf{x \: = \: 3(1)}}

\Huge \implies {\boxed{\boxed{\sf{x \: = \: 3}}}}

\rule{200}{2}

#answerwithquality

#BAL

Similar questions