Math, asked by mysticd, 10 months ago

\red {13}
 If \: S_{3} = -4, \: and \\ S_{4} = -3 ,\:in \:A.P \:then\ \prove\:that \:S_{7} = 7 \:A.P

Answers

Answered by vaishnavitiwari1041
11

 \huge{\underline{\underline{\mathfrak{Answer}}}}

➡Refer to the attachment ☺

* Actually the procedure is quite lengthy and I do not have a shorter method.

 \huge{\underline{\underline{\blue{\mathfrak{Formula Used }}}}}

(1) Sn=n/2 (2a+(n-1) d)

(2) Elimination method for the value of a and (d) .

 \huge{\underline{\underline{\red{\mathfrak{Thank You }}}}}

❤Ⓗⓞⓟⓔ ⓘⓣ ⓗⓔⓛⓟⓢ ❤

# BAL

Attachments:
Answered by duragpalsingh
7

Hey there!

General Formula of Sn:

S_n = \dfrac{n}{2}\left[ 2a + (n-1)d]

Given,

S_3 = -4\\\\\dfrac{n}{2}[2a + (n-1)d] = -4\\\\\dfrac{3}{2}(2a + 2d) = -4\\\\3(2a + 2d) =-8\\\\\boxed{6a+ 6d = -8}..........(i)

And,

S_4 = -3\\\\\dfrac{n}{2}[2a + (n-1)d] = -3\\\\\dfrac{4}{2}(2a + 3d) = -3\\\\\boxed{4a +  6d = -3}..........(ii)

Subtracting Equation (ii) from (i):

6a + 6d = -8\\4a + 6d = -3\\-~~~- ~~~~+\\=========\\2a = -5\\\boxed{a=\frac{-5}{2}}

Putting value of a in eq. (ii);

4a + 6d = -3\\\\4 \times \dfrac{-5}{2} + 6d = -3\\\\-10 + 6d = - 3\\\\6d = -3 + 10\\\\\boxed{d = \dfrac{7}{6}}

We have to prove that S₇ = 7:

Taking L.H.S:

S_7\\\\=\dfrac{n}{2} [2a + (n-1)d]\\\\=\dfrac{7}{2} \left[2 \times \left(\dfrac{-5}{2}\right) +(7-1)\times \dfrac{7}{6}\right]\\\\=\dfrac{7}{2}(-5 + 7)\\\\=7\\\\=R.H.S

Hence Proved!

Similar questions