The hypotenuse of a right isosceles triangle is "a" .Find it's area .
Answers
Step-by-step explanation:
Isosceles right angled triangle :
Two sides of right angle are equal of which hypotenuse is a.
Let two equal sides of the right angled triangle be x.
According to pythagorus theorem ,
THANKS!!!
Answer:
{x}^{2} + {x}^{2} = {a}^{2} \\ \\ \\ 2 {x}^{2} = {a}^{2} \\ \\ \\ {x}^{2} = \frac{ {a}^{2} }{2} \\ \\ \\ x = \frac{a}{ \sqrt{2} } \\ \\ \\ area \: of \: right \: angled \: triangle \: = \frac{1}{2} \times \frac{a}{ \sqrt{2} } \times \frac{a}{ \sqrt{2} } \\ \\ \\ \frac{ {a}^{2} }{4}
Step-by-step explanation:
Isosceles right angled triangle :
Two sides of right angle are equal of which hypotenuse is a.
Let two equal sides of the right angled triangle be x.
According to pythagorus theorem ,
{x}^{2} + {x}^{2} = {a}^{2} \\ \\ \\ 2 {x}^{2} = {a}^{2} \\ \\ \\ {x}^{2} = \frac{ {a}^{2} }{2} \\ \\ \\ x = \frac{a}{ \sqrt{2} } \\ \\ \\ area \: of \: right \: angled \: triangle \: = \frac{1}{2} \times \frac{a}{ \sqrt{2} } \times \frac{a}{ \sqrt{2} } \\ \\ \\ \frac{ {a}^{2} }{4}