Math, asked by mysticd, 11 months ago

\red {2}
The hypotenuse of a right isosceles triangle is "a" .Find it's area .​

Answers

Answered by Thatsomeone
3

Step-by-step explanation:

Isosceles right angled triangle :

Two sides of right angle are equal of which hypotenuse is a.

Let two equal sides of the right angled triangle be x.

According to pythagorus theorem ,

 {x}^{2}  +  {x}^{2}  =  {a}^{2}  \\  \\  \\ 2 {x}^{2}  =  {a}^{2}  \\  \\  \\  {x}^{2}  =  \frac{ {a}^{2} }{2}  \\  \\  \\ x =  \frac{a}{ \sqrt{2} }  \\  \\  \\ area \: of \: right \: angled \: triangle \:  =  \frac{1}{2}  \times  \frac{a}{ \sqrt{2} }  \times  \frac{a}{ \sqrt{2} }  \\  \\  \\  \frac{ {a}^{2} }{4}

THANKS!!!


mysticd: pleas include the word , two sides of right angled triangle.
Answered by tvb6898
0

Answer:

{x}^{2} + {x}^{2} = {a}^{2} \\ \\ \\ 2 {x}^{2} = {a}^{2} \\ \\ \\ {x}^{2} = \frac{ {a}^{2} }{2} \\ \\ \\ x = \frac{a}{ \sqrt{2} } \\ \\ \\ area \: of \: right \: angled \: triangle \: = \frac{1}{2} \times \frac{a}{ \sqrt{2} } \times \frac{a}{ \sqrt{2} } \\ \\ \\ \frac{ {a}^{2} }{4}

Step-by-step explanation:

Isosceles right angled triangle :

Two sides of right angle are equal of which hypotenuse is a.

Let two equal sides of the right angled triangle be x.

According to pythagorus theorem ,

{x}^{2} + {x}^{2} = {a}^{2} \\ \\ \\ 2 {x}^{2} = {a}^{2} \\ \\ \\ {x}^{2} = \frac{ {a}^{2} }{2} \\ \\ \\ x = \frac{a}{ \sqrt{2} } \\ \\ \\ area \: of \: right \: angled \: triangle \: = \frac{1}{2} \times \frac{a}{ \sqrt{2} } \times \frac{a}{ \sqrt{2} } \\ \\ \\ \frac{ {a}^{2} }{4}

Similar questions