Math, asked by mysticd, 1 year ago

\red {23}
If secA+tanA = 2 then show that cosecA + cotA = 3.​

Answers

Answered by sivaprasath
3

Answer:

Step-by-step explanation:

Given :

sec A + tan A = 2,   ...(i)

Then, show that cosec A + cot A = 3

Solution :

We know that,

sec² A - tan² A = 1

So,

(sec A + tan A)(sec A - tan A) = 1

(2) (sec A - tan A) = 1

⇒ sec A - tan A = \frac{1}{2} ...(ii)

Adding 1 & 2,

⇒ (sec A + tan A) + (sec A - tan A) = 2 + \frac{1}{2}

⇒ 2 sec A = \frac{5}{2}

⇒ sec A = \frac{5}{4}

⇒ sec A = \frac{1}{cos A}

⇒ cos A = \frac{1}{(\frac{5}{4})}=\frac{4}{5}

We know that,

sin² A + cos² A = 1

⇒ sin² A = 1 - cos² A

⇒ sin² A = 1 - (\frac{4}{5})^2

⇒ sin² A = 1 - \frac{16}{25}

⇒ sin² A = \frac{25-16}{25}

⇒ sin² A = \frac{9}{25}=(\frac{3}{5})^2

⇒ sin A = \frac{3}{5}

__

cosec A + cot A = \frac{1}{sin \ A} + \frac{cos \ A}{sin \ A}=\frac{1}{(\frac{3}{5})} + \frac{(\frac{4}{5})}{(\frac{3}{5})} = \frac{5}{3}+\frac{4}{3}=\frac{9}{3}=3

Hence, proved.

Answered by anuchauhan8121979
1

Given :

sec A + tan A = 2,   ...(i)

Then, show that cosec A + cot A = 3

Solution :

We know that,

sec² A - tan² A = 1

So,

(sec A + tan A)(sec A - tan A) = 1

(2) (sec A - tan A) = 1

⇒ sec A - tan A = ...(ii)

Adding 1 & 2,

⇒ (sec A + tan A) + (sec A - tan A) = 2 +

⇒ 2 sec A =

⇒ sec A =

⇒ sec A =

⇒ cos A =

We know that,

sin² A + cos² A = 1

⇒ sin² A = 1 - cos² A

⇒ sin² A = 1 -

⇒ sin² A = 1 -

⇒ sin² A =

⇒ sin² A =

⇒ sin A =

__

cosec A + cot A =

Hence, proved.

Similar questions