Math, asked by Anonymous, 1 month ago


 \red{ \bf \: evaluate \: this \:  :  }\\  \\    \pink{\leadsto \: }\orange{ \displaystyle \int \sf \:  \frac{sin \: x + cos \: x}{ \sqrt{cos2x} }  \:  \: dx} \\

Answers

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle \int \sf \: \frac{sin \: x + cos \: x}{ \sqrt{cos2x} } \: \: dx

can be rewritten as

\rm \:  =  \:\displaystyle \int \sf \: \frac{sin \: x }{ \sqrt{cos2x} } \: \: dx + \displaystyle \int \sf \: \frac{ cos \: x}{ \sqrt{cos2x} } \: \: dx

We know,

 \boxed{ \bf{ \: cos2x = 1 -  {2sin}^{2}x =  {2cos}^{2}x - 1}}

So, above integrals can be rewritten as

\rm \:  =  \red{ \:\displaystyle \int \sf \: \frac{sin \: x }{ \sqrt{ {2cos}^{2}x - 1 } } \: \: dx} +  \purple{\displaystyle \int \sf \: \frac{ cos \: x}{ \sqrt{ {2sin}^{2}x - 1 } } \: \: dx}

In the first integral,

\red{\rm :\longmapsto\:Put \: cosx = u}

\red{\rm :\longmapsto\: - sinx \: dx \:  =  \: du}

\red{\rm :\longmapsto\: sinx \: dx \:  =  \:  -  \: du}

In the second integral,

\purple{\rm :\longmapsto\:Put \: sinx = v}

\purple{\rm :\longmapsto\: \: cosx \: dx = dv}

So, above integrals can be reduced to

\rm \:  =  \: -  \red{\displaystyle \int \sf \: \frac{du}{ \sqrt{ {2u}^{2}  - 1} } } \:  +  \:  \purple{\displaystyle \int \sf \: \frac{dv}{ \sqrt{1 -  {2v}^{2} } } }

\rm \:  =  \: -  \red{\dfrac{1}{ \sqrt{2} } \displaystyle \int \sf \: \frac{du}{ \sqrt{ {u}^{2}  - \dfrac{1}{2} } } } \:  +  \:  \purple{\dfrac{1}{ \sqrt{2} } \displaystyle \int \sf \: \frac{dv}{ \sqrt{\dfrac{1}{2}  -  {v}^{2} } } }

\rm \:  =  \: -  \red{\dfrac{1}{ \sqrt{2} } \displaystyle \int \sf \: \frac{du}{ \sqrt{ {u}^{2}  - \dfrac{1}{ {( \sqrt{2}) }^{2} } } } } \:  +  \:  \purple{\dfrac{1}{ \sqrt{2} } \displaystyle \int \sf \: \frac{dv}{ \sqrt{\dfrac{1}{ {( \sqrt{2} )}^{2} }  -  {v}^{2} } } }

We know,

 \boxed{ \bf{ \: \displaystyle \int \sf \: \frac{dx}{ \sqrt{ {a}^{2} -  {x}^{2}  } } =  {sin}^{ - 1} \frac{x}{a} + c }}

and

 \boxed{ \bf{ \: \displaystyle \int \sf \: \frac{dx}{ \sqrt{ {x}^{2} -  {a}^{2}  } } =  log | \: x +  \sqrt{ {x}^{2}  -  {a}^{2} } \:  |  + c }}

\rm \:  =  \:\dfrac{1}{ \sqrt{2} }\bigg[ - log\bigg |u +  \sqrt{ {u}^{2}  - \dfrac{1}{2} } \bigg|  +  {sin}^{ - 1}\dfrac{v}{\dfrac{1}{ \sqrt{2} } }\bigg] + c

\rm \:  =  \:\dfrac{1}{ \sqrt{2} }\bigg[ - log\bigg |u +  \sqrt{\dfrac{ {2u}^{2}  - 1}{2} } \bigg|  +  {sin}^{ - 1}( \sqrt{2} v) \bigg] + c

\rm \:  =  \:\dfrac{1}{ \sqrt{2} }\bigg[ - log\bigg |\dfrac{ \sqrt{2} u +  \sqrt{ {2u}^{2}  - 1} }{ \sqrt{2} }  \bigg|  +  {sin}^{ - 1}( \sqrt{2} v) \bigg] + c

\rm \:  =  \:\dfrac{1}{ \sqrt{2} }\bigg[ - log\bigg |\sqrt{2} u +  \sqrt{ {2u}^{2}  - 1}\bigg| + log \sqrt{2}  +  {sin}^{ - 1}( \sqrt{2} v) \bigg] + c

\rm \:  =  \:\dfrac{1}{ \sqrt{2} }\bigg[ - log\bigg |\sqrt{2} u +  \sqrt{ {2u}^{2}  - 1}\bigg| + {sin}^{ - 1}( \sqrt{2} v) \bigg] + d

\rm \:  =  \:\dfrac{1}{ \sqrt{2} }\bigg[ - log\bigg |\sqrt{2}cosx +  \sqrt{ {2cos}^{2}x  - 1}\bigg| + {sin}^{ - 1}( \sqrt{2} sinx) \bigg] + d

\rm \:  =  \:\dfrac{1}{ \sqrt{2} }\bigg[ - log\bigg |\sqrt{2}cosx +  \sqrt{ cos2x}\bigg| + {sin}^{ - 1}( \sqrt{2} sinx) \bigg] + d

Additional Information

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions