ANSWER THE FOLLOWING
Answers
||✪✪CORRECT QUESTION ✪✪||
If X^2- (15/x) =4 , where x does not equal to 3. Find value of :- x( x+1( x+2)( x+3) ?
|| ✰✰ ANSWER ✰✰ ||
Given That :-
➼ x² - (15/x) = 4
Taking LCM,
➼ (x³ - 15)/x = 4
➼ (x³ - 15) = 4x
Adding (-12) Both Sides now, we get,
➼ (x³ - 15) - 12 = 4x - 12
➼ (x³ - 27) = 4(x - 3)
➼ (x³ - 3³) = 4(x - 3)
using (a³ - b³) = (a - b)(a² + b² + ab) in LHS Now,
➼ (x - 3)(x² + 3x + 9) = 4(x - 3)
Cancelling (x - 3) From both sides now,
➼ (x² + 3x + 9) = 4
➼ (x² + 3x) = 4 - 9
➼ (x² + 3x) = (-5) ---------------- Equation ❶
_____________________________
Now, Adding 2 Both Sides of Equation ❶ we get,
➻ (x² + 3x + 2) = (-5) + 2
➻ (x² + 3x + 2) = (-3) -------------- Equation ❷
___________________________
Now, we Have To Find The value of x(x+1)(x+2)(x+3) :-
☛ x(x+1)(x+2)(x+3)
☛ [x(x+3)] * [(x+1)(x+2)]
☛ (x² + 3x) * (x² + 3x + 2)
Putting Values of Equation ❶ & ❷ Now, we get ,
☛ (-5) * (-3)
☛ 15 (Ans.)
ஃ The Value of x(x+1)(x+2)(x+3) will be 15.
___________________________
We are given x² - () = 4
=> = 4
=> (x³ - 15) = 4x
By adding -12 to both Sides now:-
=> (x³ - 15) - 12 = 4x - 12
=> (x³ - 27) = 4(x - 3)
=> (x³ - 3³) = 4(x - 3)
By using identity:-
(a³ - b³) = (a - b)(a² + b² + ab)
=> (x - 3)(x² + 9 + 3x) = 4(x - 3)
=> (x² + 3x + 9) =
=> (x² + 3x + 9) = 4
=> x² + 3x = 4 - 9
=> x² + 3x = -5 -(i)
By adding 2 to both sides:-
=> x² + 3x + 2 = -5 + 2
=> x² + 3x + 2 = -3 -(ii)
We have to find the value of x(x+1)(x+2)(x+3)
=> x(x+1)(x+2)(x+3)
=> [x(x+3)] × [(x+1)(x+2)]
=> (x² + 3x) × (x² + 3x + 2)
By putting the values of (i) and (ii):-
=> (-5) × (-3)
=> 5 × 3
=> 15