Math, asked by ab4343481, 1 day ago


\red \bigstar \: \blue \bigstar \: \boxed{Question} \green \bigstar \pink \bigstar
A rocket is fired 'vertically' from the surface of mars with a speed of 2 km s^(-1). If 20% of its initial energy is lost due to Martian atmospheric resistance, how far will the rocket go from the surface of mars before returning to it? Mass of mars = 6.4×10²³ kg; radius of mars = 3395 km; G = 6.67×10^-11 N m² kg^-2 .
 \rule{200pt}{}
\mathbb\pink{No \: spam}
Expecting answers from:
★ Moderators
★ Brainly Stars and Teachers
★ Other Best Users​

Answers

Answered by Anonymous
137

Answer:

Given that:-

  • Initial velocity of the rocket (v) = 2km/s

In m/s :-

2km/s = 2×10³ m/s

  • Mass of Mars (M) = 6.4 × 10²³ kg
  • Radius of Mars (R) = 3395 km

In m :-

3395 km = 3.395×10⁶ m

  • Universal gravitational constant ;

 \mapsto \: G = 6.67 \times  {10}^{ - 11}  \: N \:  {m}^{2}  \:  {kg}^{ - 2}

Let :-

  • Mass of Rocket = m

★ Initial kinetic energy of the rocket :-

=> 1/2 mv²

★ Initial potential energy of the rocket :-

 \mapsto \:  \frac{ - GMm}{R}

Therefore,

★ Total Initial energy :

=> Initial kinetic energy - Initial potential energy

\longmapsto \:  \frac{1}{2}  {mv }^{2}  \: -  \frac{GMm}{R}

To Find :-

  • If 20% of its initial energy is lost due to Martian atmospheric resistance, then only 80% of its kinetic energy in reaching a height. So, How far will the rocket go from the surface of mars before returning to it?

Solution :-

Total initial energy available :-

 \mapsto \:  \frac{80}{100}  \times  \frac{1}{2} {mv}^{2} -  \frac{GMm}{R}  = 0.4 {mv }^{2}   -  \frac{GMm}{R}

Let, The maximum height reached by the rocket = 'h'.

___________________

At this height, the velocity and hence, the kinetic energy of the rocket will become zero(0).

★ Total energy of rocket height (h) :-

 \mapsto \:   - \frac{ GMm}{(R + h)}

_____________________

Applying the laws of conversation of energy for the rocket, we can write:

0.4 {mv}^{2}  -  \frac{GMm}{R}  =  \frac{ - GMm}{(R + h)}

0.4 {v}^{2}  =  \frac{GM}{R}  -  \frac{GM}{R + h}

 \mapsto \: Gm( \frac{1}{R}  -  \frac{1}{R + h} )

 \mapsto \: Gm \: ( \frac{R + h -R}{R(R + h)} )

 \mapsto \:  \frac{GMh}{R(R + h)}

 \mapsto \:  \frac{R + h}{h}   =  \frac{GM}{ {0.4v}^{2}R }

 \mapsto \:  \frac{R}{h}  + 1 =  \frac{GM}{ {0.4v}^{2}R }

 \mapsto \:  \frac{R}{h} =  \frac{GM}{ {0.4v}^{2}R }  - 1

 \mapsto \:  \frac{R}{h}  =  \frac{R}{ \frac{GM}{ {0.4v}^{2}R } - 1 }

 \mapsto \:  \frac{ {0.4R}^{2} {v}^{2}  }{GM -  {0.4v}^{2}R }

 \mapsto \:  \frac{0.4 \times (3.395 \times  {10}^{6})^{2} \times ( {2 \times 10}^{3})^{2}}{6.64 \times  {10}^{ - 11}  \times 6.4 \times  {10}^{23} - 0.4 \times  { ({2 \times 10}^{3} )}^{2}  \times (3.395 \times  {10}^{6})  }

 \mapsto \:  \frac{18.442 \times  {10}^{11} }{42.688 \times  {10}^{12}  - 53432 \times  {10}^{12} }  =  \frac{18.442}{37.256} \times  {10}^{6}

 \mapsto \: 495 \times  {10}^{3} m=  495km


amansharma264: Excellent
Anonymous: Well done!
Answered by maheshtalpada412
28

Answer:

 \large\color{darkcyan} \underline{ \begin{array}{  || |l| ||  }  \hline  \color{magenta} \\ \hline \boxed{ \text{ \tt \: Solution:-}  }  \end{array}}

Step-by-step explanation:

Let m be the mass of the rocket,

\[ \begin{aligned} \tt M & \rm=\text { mass of Mars }=6.4 \times 10^{23} kg , \\ \\  \tt R & \rm=\text { radius of Mars }=3395 km , \\  \\ \tt v & \rm=\text { initial speed of rocket }=2 \times 10^{3} m s ^{-1}, \end{aligned} \]

h= maximum height reached by the rocket.

Initial kinetic energy of the rocket \rm=\dfrac{1}{2} m v^{2} ,

initial potential energy of the rocket  \rm=-\dfrac{G M m}{R} ,

and energy lost due to Martian atmosphere  \rm=\dfrac{20}{100} \times \dfrac{1}{2}{m v}^{2}=\dfrac{1}{10}{m v}^{2}

From energy conservation principle, total initial mechanical energy = energy loss due to resistance + remaining potential energy.

\[ \begin{array}{ll}   \displaystyle\rm \therefore  \frac{1}{2} m v^{2}+\left(\frac{-G M m}{R}\right)=\frac{1}{10} m v^{2}+\left(-\frac{G M m}{R+h}\right) \\\\  \displaystyle\rm \text { or } G M m\left(\frac{1}{R}-\frac{1}{R+h}\right)=m v^{2}\left(\frac{1}{2}-\frac{1}{10}\right)=\frac{2}{5} m v^{2} \\ \\  \displaystyle\rm\text { or } \quad \frac{h}{R(R+h)}=\frac{2 v^{2}}{5 G M} \\ \\  \displaystyle\rm\text { or } \quad \frac{R+h}{h}=\frac{5 G M}{2 R v^{2}} \\ \\  \displaystyle\rm\text { or } \quad \frac{R}{h}=\frac{5 G M}{2 R v^{2}}-1=\frac{5 G M-2 R v^{2}}{2 R v^{2}} \\ \\  \displaystyle\rm\Rightarrow \quad \text { required height } h=\frac{2 R^{2} v^{2}}{5 G M-2 R v^{2}}=\frac{0.4 R^{2} v^{2}}{G M-0.4 R v^{2}} \\\\  \displaystyle\rm \quad=\frac{0.4\left(3395 \times 10^{3} m \right)^{2}\left(2000 m s ^{-1}\right)^{2}}{\left(6.67 \times 10^{-11} N m ^{2} kg ^{-2}\right)\left(6.4 \times 10^{23} kg \right)-0.4\left(3395 \times 10^{3} m \right)\left(2000 m s ^{-1}\right)^{2}} \\\\  \displaystyle\rm \quad=\frac{18.44 \times 10^{18} m ^{4} s ^{-2}}{\left(42.688 \times 10^{12}-5.432 \times 10^{12}\right) m ^{3} s ^{-2}}\\   \\ \\  \displaystyle\rm=0.495 \times 10^{6} m \\  \\  \\  \boxed{\color{violet}\displaystyle\rm  =495 km .} \end{array} \]

Similar questions