English, asked by Anonymous, 6 months ago

\red{\bold{\underline{\underline{❥Question᎓}}}} \  \textless \ br /\  \textgreater \ ❥Question᎓





Q:-Find the value of

\sqrt{a - b}




if \frac{8 + 3 \sqrt{7} }{8 - 3 \sqrt{7} } - \frac{8 - 3 \sqrt{7} }{8 + 3 \sqrt{7} } = a + b \sqrt{7}


{\tt{\green{\underline{\underline{\huge{PLEASE\: HELP\: ME}}}}}}

Answers

Answered by Anonymous
57

Solution

Given

 \rm \implies \dfrac{8  + 3 \sqrt{7} }{8 -3 \sqrt{7}  }  -  \dfrac{8 - 3 \sqrt{7} }{8 + 3 \sqrt{7} }  = a + b \sqrt{7}

To find

 \rm \implies \:  \sqrt{a - b}

Now take

\rm \implies \dfrac{8  + 3 \sqrt{7} }{8 -3 \sqrt{7}  }  -  \dfrac{8 - 3 \sqrt{7} }{8 + 3 \sqrt{7} }  = a + b \sqrt{7}

By taking lcm we get

 \rm \implies \dfrac{(8  + 3 \sqrt{7})(8 + 3 \sqrt{7} ) - (8 - 3 \sqrt{7} )(8 - 3 \sqrt{7} ) }{(8 - 3 \sqrt{7} )(8 + 3 \sqrt{7} )}

 \rm \implies \:  \dfrac{(8 + 3  \sqrt{7}  ) {}^{2}  - (8 - 3 \sqrt{7} ) ^{2} }{(8) {}^{2} - (3 \sqrt{7} ) {}^{2}  }

We using this identity

 \rm \to \: (a - b)(a + b) =  {a}^{2}  -  {b}^{2}

 \rm \to(a + b)^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab

 \rm \to(a - b) ^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab

Apply this identity

 \rm \implies \:  \dfrac{ {8}^{2}  + (3  \sqrt{7} ) {}^{2}  + 2 \times 8 \times 3 \sqrt{7}  - ( {8}^{2}  + (3 \sqrt{7} ) {}^{2}  - 2 \times 8 \times 3 \sqrt{7} }{64 - 63}

 \rm \implies \:  \dfrac{ {8}^{2}  +  (3 \sqrt{7} ) {}^{2}  +48 \sqrt{7}   - 8 {}^{2}    -  (3 \sqrt{7} ) {}^{2}  + 48 \sqrt{7} }{1}

 \rm \implies \:   \cancel{8}^{2}  +  \cancel{ (3 \sqrt{7} )} {}^{2}  +48 \sqrt{7}   -  \cancel{8 {}^{2} }   -  \cancel{ (3 \sqrt{7} }) {}^{2}  + 48 \sqrt{7}

 \rm \implies \: 96 \sqrt{7}

So value of a and b is

 \rm \implies \: a = 0 \:  \: and \: b \:  = 96

We have find the value of

 \rm \implies \sqrt{a - b}

Put the value on

 \rm \implies \sqrt{0 - 96}  =  \sqrt{ - 96}

value of -96 is doesn't exist

Similar questions