Math, asked by Abhijithajare, 1 month ago


 \red{challenge}
\pink{Question}

If msinA =nsin(A+2B), prove that tan (A+B)cotB =(m+n)÷(m-n)​

No spam​

Answers

Answered by MathHacker001
72

Question :-

If msinA = nsin(A+2B), then prove that tan(A+B) cotB =  \rm{ \frac{m + n}{m - n}} \\

Solution :-

Given : msinA =nsin(A+2B)

 \sf :  \longmapsto{ \frac{m}{n} =   \frac{ \sin(A + 2B)}{ \sin A} } \\

Apply Componendo and dividendo

\sf:\longmapsto{ \frac{m + n}{m - n} =  \frac{ \sin( A  + 2B) +  \sin A }{ \sin( A+ 2B)   - \sin A}    } \\  \\ \sf:\longmapsto{ \frac{m + n}{m - n}  =  \frac{ \sin( A+ B) \cos }{ \cos(A +B )   \sin} }   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \bf:\longmapsto \red{ \frac{m + n}{m - n}  =  \tan(A + B) \cot B  } \:  \:  \:

Hence Proved !

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:msinA = nsin(A + 2B)

can be rewritten as

\rm :\longmapsto\:\dfrac{m}{n}  = \dfrac{sin(A + 2B)}{sinA}

We know,

The process of Componendo and Dividendo is defined as

\red{ \boxed{ \sf{ \: \frac{a}{b} =  \frac{c}{d} \: \bf\implies \: \frac{a + b}{a - b}  =  \frac{c + d}{c - d}}}}

So,

On applying Componendo and Dividendo, we get

\rm :\longmapsto\:\dfrac{m + n}{m - n}  = \dfrac{sin(A + 2B) + sinA}{sin(A + 2B) - sinA}

We know that,

\red{ \boxed{ \sf{ \:sinx + siny = 2sin\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg]}}}

and

\red{ \boxed{ \sf{ \:sinx  -  siny = 2cos\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{x - y}{2} \bigg]}}}

So, on applying these results, on RHS, we get

\rm :\longmapsto\:\dfrac{m + n}{m - n}  = \dfrac{2sin\bigg[\dfrac{A + 2B + A}{2} \bigg]cos\bigg[\dfrac{A + 2B - A}{2} \bigg]}{2cos\bigg[\dfrac{A + 2B + A}{2} \bigg]sin\bigg[\dfrac{A + 2B - A}{2} \bigg]}

\rm :\longmapsto\:\dfrac{m + n}{m - n}  = \dfrac{2sin\bigg[\dfrac{2A + 2B}{2} \bigg]cos\bigg[\dfrac{2B}{2} \bigg]}{2cos\bigg[\dfrac{2A + 2B}{2} \bigg]sin\bigg[\dfrac{2B}{2} \bigg]}

\rm :\longmapsto\:\dfrac{m + n}{m - n}  = \dfrac{sin(A + B)cosB}{cos(A + B)sinB}

\rm :\longmapsto\:\dfrac{m + n}{m - n}  = \dfrac{tan(A + B)}{tanB}

\bf :\longmapsto\:\dfrac{m + n}{m - n}  = tan(A + B){cotB}

Hence,

\bf :\longmapsto\:\red{ \boxed{ \sf{ \:\dfrac{m + n}{m - n}  = tan(A + B){cotB}}}}

Additional Information :-

\red{ \boxed{ \sf{ \:cosx + cosy = 2cos\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg]}}}

\red{ \boxed{ \sf{ \:cosx  -  cosy = -  \:  2sin\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{x - y}{2} \bigg]}}}

\red{ \boxed{ \sf{ \:2sinxcosy = sin(x + y) + sin(x - y)}}}

\red{ \boxed{ \sf{ \:2cosxcosy = cos(x + y) + cos(x - y)}}}

\red{ \boxed{ \sf{ \:2sinxsiny = cos(x - y) - cos(x + y)}}}

Similar questions