Math, asked by Abhijithajare, 1 month ago


\red{challenge}
\pink{Question}

If msinA =nsin(A+2B), prove that tan (A+B)cotB =(m+n)÷(m-n)​

No spam​

Answers

Answered by ꜱᴄʜᴏʟᴀʀᴛʀᴇᴇ
8

Answer:

Solution:-

Given :

msinA = nsin(A+2B)

\begin{gathered} \sf : \longmapsto\green { \frac{m}{n} = \frac{ \sin(A + 2B)}{ \sin A} } \\ \end{gathered}

Apply Componendo and dividendo

\begin{gathered}\sf:\longmapsto \red{ \frac{m + n}{m - n} = \frac{ \sin( A + 2B) + \sin A }{ \sin( A+ 2B) - \sin A} } \\ \\ \sf:\longmapsto \blue{ \frac{m + n}{m - n} = \frac{ \sin( A+ B) \cos }{ \cos(A +B ) \sin} } \: \: \: \: \: \: \: \: \: \: \\ \\ \bf:\longmapsto { \frac{m + n}{m - n} = \tan(A + B) \cot B } \: \: \: \end{gathered}

Hence Proved.

Hope this is helpful for you.

Similar questions