Math, asked by Anonymous, 1 day ago

  \red{\displaystyle  \int_{0}^{1}  \sqrt{ \sqrt{  \ln( \rm{{x) }}} } }

Answers

Answered by IamIronMan0
21

Answer:

The function is not defined in given limits because in range 0 < x < 1

  \red{ln(x)  &lt; 0 \implies \:  \sqrt{ ln(x) }  \:  \:  = Imaginary}

Answered by sajan6491
11

\red{\displaystyle \int_{0}^{1} \sqrt{ \sqrt{ \ln( \rm{{x) }}} } }

\red{\displaystyle  \rm{\int_{ \infty }^{ 0 } \sqrt{ \sqrt{ ( \rm{{ - u) }}}  }  \cdot -  {e}^{ - u}  \cdot du}}

\red{\displaystyle  \rm{\int_{ \infty }^{ 0 } { { ( \rm{{ - u)^{ \frac{1}{4} }  }}}  }  \cdot   {e}^{ - u}  \cdot du}}

\red{\displaystyle  \rm{(  - 1) {}^{ \frac{1}{4} }  \int_{ 0 }^{  \infty  } { { \rm{{   }}}  }     {e}^{ - u}  \cdot {u}^{ \frac{1}{4}  } \cdot du}}

\red{\displaystyle  \rm{(  - 1) {}^{ \frac{1}{4} }  \int_{ 0 }^{  \infty  } { { \rm{{   }}}  }     {e}^{ - u}  \cdot {u}^{ \frac{5}{4} - 1  } \cdot du}}

  \large\rm \red{ {e}^{i \frac{\pi}{4} }  \cdot \Gamma( \frac{5}{4}) }

   \large\rm \red { {}  \bigg({\frac{1}{ \sqrt{2} } + i \frac{1}{ \sqrt{2} }   \bigg) }  \cdot \Gamma( \frac{5}{4}) }

   \large\rm \red{ \frac{1}{ \sqrt{2} }(1 + i) \cdot  \Gamma( \frac{5}{4} )}

Similar questions