Math, asked by Anonymous, 4 days ago

 \red{ \displaystyle  \rm\int_{0}^{1}  \frac{ {x}^{ \frac{1}{a}  }  - 1}{ \left(1 +  {x}^{ \frac{1}{a} }\right)  ln(x)  } dx}

Answers

Answered by sajan6491
7

\red{ \displaystyle \rm\int_{0}^{1} \frac{ {x}^{ \frac{1}{a} } - 1}{ \left(1 + {x}^{ \frac{1}{a} }\right) ln(x) } dx}

\red{ \displaystyle \rm\int_{0}^{1} \frac{ y - 1}{ \left(1 + y^{  }\right) \: a   \ln(y) }  \: a {y}^{a - 1} \: dy } \:

\red{ \displaystyle \rm\int_{0}^{1} \frac{  {y}^{a}  -  {y}^{a - 1} }{ \left(1 + y^{  }\right)   \ln(y) }   \: dy } \:

\red{ \displaystyle \rm\int_{0}^{1} \frac{  {y}^{a - 1}  -  {y}^{a } }{ 1 -  {y}^{2}    }  \overbrace{\left  [  -  \frac{1 - y}{ ln(y) } \right]  } ^{  \displaystyle\int_{0}^1  \rm{y}^t   \: dt }   \: dy } \:

\red{ \displaystyle \rm\int_{0}^{1} \int_{0}^{1} \frac{ {y}^{t + a - 1}  -  {y}^{t + a} }{1 -  {y}^{2} }  \: dy \: dt   }

\red{ \displaystyle \rm \frac{1}{2} \int_{0}^{1} \int_{0}^{1} \frac{ {y}^{ \frac{t}{2}  +  \frac{a}{2} - 1 }  -  {y}^{  \frac{t}{2} +  \frac{a}{2}   -  \frac{1}{2}  \frac{}{}}}{1 -  {y}^{} }  \: dy \: dt   }

\red{ \displaystyle \rm \frac{1}{2} \int_{0}^{1} \left[\int_{0}^{1} \frac{1 -  {y}^{ \frac{t}{2}  +  \frac{a}{2} -  \frac{1}{2}  }  {}}{1 -  {y}^{} }  \: dy \:  -\int_{0}^{1} \frac{1 -  {y}^{ \frac{t}{2}  +  \frac{a}{2} -  1  }  {}}{1 -  {y}^{} }  \: dy  \right ]  \: dt  }

\red{ \displaystyle \rm \frac{1}{2} \int_{0}^{1} \int_{0}^{1}  \left[  \Psi \left(\frac{t}{2}   +  \frac{a}{2}  +  \frac{1}{2}  \right)-  \Psi \left(\frac{t}{2}   +  \frac{a}{2}   \right) \: \right] \: dt   }

 \rm \red{ ln \left( \frac{\Gamma( \frac{t}{2} +  \frac{a}{2} +  \frac{1}{2})   }{\Gamma( \frac{t}{2}  +  \frac{a}{2}) }  \right)^{t = 1}_{t = 0}}

 \rm \red{ ln \left( \frac{\Gamma(   \frac{a}{2} +  1)   }{\Gamma( \frac{1}{2}  +  \frac{a}{2}) }  \right) - ln \left( \frac{\Gamma(   \frac{a}{2} +   \frac{1}{2} )   }{\Gamma(   \frac{a}{2}) }  \right) }

 \rm \red{  ln \left( \frac{\Gamma(   \frac{a}{2} +   1)  \Gamma( \frac{a}{2})  }{\Gamma^{2} (   \frac{a}{2} +  \frac{1}{2} ) }  \right) }

Similar questions